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GEOTHERMAL RESOURCES 
OF THE ALEUTIAN ARC 

by Roman J. Motyka, Shirley A. Liss, Christopher J. Nye, and Mary A. Moorman 

INTRODUCTION more remote sites between Adak Island and Mount 
Spurr. Information on these sites was obtained from 

Quaternary Aleutian volcanism extends for over 
2,500 km, from Buldir Island on the west to Mount 
Hayes on the east (fig. 1). This belt of volcanic 
activity lies immediately north of the Aleutian trench, 
a convergent boundary between the North American 
and Pacific lithospheric plates. The convergence of 
these plates has produced one of the most seismically 
active zones in the world. 

Active volcanic systems, shallow, magmatically 
heated rock, and deep fracture and fault systems have 
combined to create favorable settings for the 
development of hydrothermal systems. We have 
tentatively identified at least 56 sites in the Aleutian 
arc (fig. 2) where surface expressions of these 
hydrothermal systems, such as thermal springs and 
fumaroles, are found (table 1, sheet 4). Many of these 
sites were first reported by Waring (1917) and later 
summarized in Miller (1973), White and Williams 
(1975), Markle (1979), Muffler (1979), Turner and 
others (1980), and Motyka and others (1983a). 

This report is based on studies conducted by the 
Alaska Division of Geological & Geophysical Sur- 
veys (DGGS) between 1980 and 1988, frequently in 
cooperation with investigators from the University 
of Alaska Fairbanks. Our earlier reconnaissance stud- 
ies concentrated on the geochemistry of thermal 
spring waters and fumaroles. Later site-specific stud- 
ies included geological and geophysical surveys and 
additional fluid geochemistry investigations. Explor- 
atory geothermal wells were drilled at Makushin and 
Summer Bay on northern Unalaska Island. 

Our initial survey (1980) covered the area 
between Atka Island in the central Aleutians and 
Becharof Lake on the Alaska Peninsula (Motyka and 
others, 1981). We extended this coverage west to 
Adak Island in 1981 (Motyka, 1983) and east to 
Mount Spurr in 1982. Several sites reported but not 
substantiated by Waring could not be found by DGGS 
and therefore are not included in this report (Motyka 
and others, 198 1). Some sites not previously reported, 
or only briefly mentioned, were investigated by 
DGGS and are described on the map plates. We did 
not visit sites west of Adak Island or many of the 

published and unpublished sources. We maintain a 
bibliography of all references relevant to geothermal 
resources in Alaska. The bibliography is periodically 
updated and is available to the public (Liss, Motyka, 
and Nye, 1988). 

REGIONAL GEOLOGY 

This summary of the geologic setting of the 
Aleutian arc is taken largely from Kienle and Nye 
(1990). Aleutian arc volcanism is the result of active 
subduction of the Pacific lithospheric plate beneath 
the North American lithospheric plate. The 3,400-km- 
long Aleutian trench that extends from the northern 
end of the Kamchatka trench to the Gulf of Alaska 
marks the boundary between the two plates. The 
Quaternary Aleutian arc, which spans about 2,500 km 
of the Alaska mainland and the Aleutian Islands, is 
built on continental crust in the east and on oceanic 
crust in the west. The eastern and western parts of the 
arc are divided by the Bering Sea continental shelf, 
which intersects it near Unalaska, Akutan, and Unimak 
Islands. The volcanic front is sharp and closely aligned 
with the 100-km depth contour to the Wadati-Benioff 
zone (Jacob, 1986; Kienle and others, 1983). 

The island-forming Quaternary volcanoes of the 
oceanic part of the arc were built on the Aleutian 
Ridge, which rises 3,000 m above the Bering Sea floor 
to the north and more than 6,000 m above the Aleu- 
tian trench to the south. Scholl and others (1987) 
describe three rock sequences that record the major 
evolutionary growth of the Aleutian Ridge: 

(1) Arc volcanism in early to middle Eocene time 
(55 to 50 Ma) formed most of the ridge. The lower 
series consists of igneous and volcaniclastic basement 
rocks. 

(2) Growth by volcanism subsided during 
Oligocene and Miocene time, when erosional 
processes buried the ridge flanks with thick marine 
sedimentary units. Plutonic activity increased during 
Oligocene through early Miocene time (35 to 8 Ma). 

(3) Pliocene and Quaternary age (younger than 
5.3 Ma) slope-mantling and crustal basin sedimentary 



Figure 1 .  Active volcanoes of the Aleutian arc. Numbers keyed to table 2, sheet 4. 



Figure 2. Geothennal sites in the Aleutian arc. Site numbers are keyed to table I ,  sheet 4. 
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sequences that unconformably overlie the older units 
form the upper series. Regional subsidence and block 
faulting affected the ridge crest in late Cenozoic time. 
Subsequent wave erosion created a prominent summit 
platform. The Quaternary volcanic belt developed 
near the northern edge of this platform. 

Whereas no terrestrial rocks older than Tertiary 
have been found in the oceanic part of the arc, terres- 
trial rocks of Mesozoic and Paleozoic age make up 
the basement of the continental part of the arc on the 
Alaska Peninsula and in the Cook Inlet region (Burk, 
1965; Beikrnan, 1980). 

VOLCANOES 

The Aleutian arc includes 89 Quaternary 
volcanoes, of which 44 have been historically active 
(Sirnkin and others, 1981) (table 2, sheet 4). At least 
21 of the Quaternary volcanic centers have calderas 
(Miller and Smith, 1987), and as many as 19 of these 
may have formed in Holocene time. Aleutian arc 
volcanoes are intimately related to the subduction of 
the Pacific Plate beneath the North American Plate. 
Material from the subducted slab mixes with material 
from the astherospheric mantle to produce primary 
magmas. However, the relative distribution is 
unknown. 

Aleutian magmas have major and trace element 
and isotopic compositions broadly typical of relatively 
mature arcs built on oceanic or thin continental crust 
(Kienle and Nye, 1990). They are dominantly 
medium potassium basalts through dacites with both 
calc-alkaline and tholeiitic affinities. Rhyolite is 
volumetrically minor and occurs as glass shards, ash 
flows, and small pods and domes on the flanks of a 
few volcanoes. Aleutian volcanic rocks are typically 
porphyritic, with plagioclase almost always 
dominant. Mafic lavas usually contain olivine and 
clinopyroxene phenocrysts, whereas intermediate and 
silicic lavas usually contain orthopyroxene and 
clinopyroxene. Amphibole phenocrysts are less 
common, but do occur throughout the compositional 
range of Aleutian calc-alkaline magmas. Biotite, 
which is even more rare, has been reported from a 
few eruptive centers. 

Magmas from the eastern part of the arc are domi- 
nantly calc-alkaline andesite; tholeiitic magmas are 
rare. Magmas from the central part of the arc are domi- 
nantly tholeiitic basalt and basaltic andesite. The 
central part of the arc also contains the most volumi- 
nous volcanoes. Volcanoes in the western part of the 

arc erupt calc-alkaline and tholeiitic basalt, basaltic 
andesite, and andesite. 

Table 2 (sheet 4) lists known Quaternary volcanoes 
of the Aleutian arc and provides information on volcano 
elevation, current morphology, and eruptive history. It 
also includes a qualitative estimate of the potential for 
the presence of a developable hydrothermal resource. 
Numbers are keyed to the map sheets. 

HYDROTHERMAL SYSTEMS 

Thermal springs, fumaroles, and heated ground 
are the surface manifestations of subsurface 
hydrothermal systems. In such systems, heat is 
transported primarily by convective circulation of 
fluids (usually water or steam) rather than by thermal 
conduction through solid rock. Hydrothermal systems 
have been classified as either hot-water or vapor- 
dominated, depending on the dominant pressure- 
controlling fluid in fractures and pores. Most explored 
systems in the world are hot-water dominated (White 
and Williams, 1975). Vapor-dominated systems are 
relatively rare. Although fumarole fields are 
associated with many Aleutian arc thermal sites, these 
steam-phase manifestations are probably surface 
expressions of shallow, vapor-dominated systems 
created by boiling of a deeper hot-water system (for 
example, Makushin [Motyka and others, 1983b; 
Motyka and others, 19881). Hot-water convection 
systems are divided into three categories based on 
reservoir temperatures: high temperature (>150°C); 
intermediate temperature (90 to 150°C); and low 
temperature (<90°C) (Muffler, 1979). 

The temperature of the hottest spring or fuma- 
role, the estimated convective heat discharged at the 
surface by spring flow, the total dissolved solids in 
the waters from the principal spring, and the estimated 
reservoir temperature based on chemical 
geothermometry for each thermal site are shown on 
the map sheets. A dash indicates no data for that en- 
try. Site numbers are keyed to table 1 (sheet 4), which 
lists location by geographic coordinates. In addition, 
brief site descriptions accompany the diagrams. 
Larger scale insets (1:250,000) are provided for sev- 
eral areas that were more intensively investigated. 

Chemical geothermometers are based on 
temperature-sensitive chemical reactions in 
hydrothermal fluids and are commonly used to 
estimate subsurface temperatures at sites where 
drilling data are not available. These reactions may 
control either the absolute amount of an element (for 
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example, silica), the relative concentrations of 
elements (for example, cations), or the fractionation 
of isotopes. The estimated reservoir temperatures 
derived from geothermometry calculations may 
represent actual subsurface temperatures if several 
assumptions about the nature of an individual 
hydrothermal system are satisfied. For a review of 
chemical and isotopic geothermometers, see Fournier 
(1981). 

THERMAL WATERS 

Only four thermal-spring sites in the Aleutian 
arc are located near population centers. These include 
Kiguga (site 4, sheet 1) and Andrew Bay (site 5, 
sheet l), near the Adak naval station; Summer Bay 
(site 21, sheet 2), near Unalaska village; and Hot 
Springs Bay (site 23, sheet 2), near Akutan village. 
False Pass (site 28, sheet 2) and Port Moller (site 35, 
sheet 3) thermal springs are located within 12 km of 
small villages. Sites 7,8, and 9 (sheet 1) on northeast 
Atka Island lie about 15 km north of Atka village; 
the Makushin geothermal area (site 20, sheet 2) is 
located 20 km west of Unalaska village; while 
Nikolski, the closest village to Geyser Bight (site 13, 
sheet 2), is located 40 km west of this geothermal 
area. The remaining thermal springs are located in 
remote areas, commonly near tidewater or on the 
flanks of active volcanoes. 

Table 3 (sheet 4) provides chemical analyses of 
water from the principal thermal spring, geothermal 
well, or crater lake at each visited site. Plots of major 
anions (Cl-, HC03-, and SO4-2) provide a convenient 
method of classifying thermal waters based on the 
dominant anion (fig. 3) and can also provide insights 
into the origin of the thermal water. In figure 3, 
compositional ranges are indicated for several typical 
thermal-water groups (Giggenbach and Goguel, 
1989). Acid "volcanic" waters are formed when 
volcanic crater lakes or shallow groundwater absorb 
high-temperature, sulfur- and chlorite-rich volcanic 
gases (for example, sites 48, 51, and 56a, sheet 3). 
Sulfate-rich "steam-heated" waters form when 
shallow groundwater absorbs steam, hydrogen- 
sulfide, and other gases produced by boiling of a 
deeper hot-water system (for example, sites 6, 7, 8, 
and 9, sheet 1 ; site 22, sheet 2). Neutralization of these 
generally acidic waters through subsurface water- 
rock-gas interactions can produce waters enriched in 
bicarbonate (for example, sites 19 and 20, sheet 2). 
High-sulfate, steam-heated waters are usually only 

encountered at higher elevations of a geothermal field. 
Geothermometers are generally not suitable for 
application to these steam-heated waters. Neutral, 
low-sulfate, high-chloride waters that lie along or near 
the C1--HC03- axis, close to the C1- corner (fig. 3) 
are considered to be directly related to deep thermal 
waters and are best suited for estimating reservoir 
temperatures. High bicarbonate concentrations 
indicate the waters are derived from the margins of a 
thermal area, whereas waters containing near-equal 
proportions of anions are probably of mixed origin. 
Considerable caution is required in applying 
geothermometers to these waters. 

The N ~ + - K + - M ~ + ~  diagram (fig. 4) and its 
application to geothermal systems are described by 
Giggenbach (1988). The "full-equilibrium" curve 
represents water compositions in full equilibrium with 
the mineral system albite-potassium feldspar- 
muscovite-clinochlore-silica at the temperatures 
indicated. The boundary between partially 
equilibrated and immature waters is somewhat 
arbitrary and serves only as a rough guide. The 
isotherms correspond to equilibrium between the 
pairs potassium-sodium and potassium-magnesium 
at various temperatures as derived by Giggenbach 
(1988). Magnesium concentrations in thermal waters 
are highly temperature dependent; hotter 
temperatures favor magnesium depletion through 
hydrothermal reactions. In mature thermal waters, 
magnesium is commonly present in trace amounts 
only. 

Water from Makushin Well ST-1 (site 20a, 
sheet 2) plots close to the full equilibrium line, while 
Geyser Bight thermal spring waters (sites 13a,b,c, 
sheet 2) and several other chloride thermal spring 
waters trend toward the magnesium corner in the 
partial-equilibrium field. This trend reflects the 
greater speed with which the potassium and 
magnesium concentrations adjust to changes in 
temperature as compared with potassium and sodium 
as the water ascends to the surface. Several thermal 
waters plot in the compositional range marked 
"immature waters" near the magnesium corner. For 
some, magnesium may be added by dissolution of 
minerals in the shallow environment as the waters 
cooled conductively or mixed with cold groundwater 
(for example, sites 23, 28, and 32, sheet 2). The 
remaining waters analyzed in this study are typically 
either acid (sites 6,7,8, and 9, sheet 1; sites 22,48, 
5 1, and 56a, sheet 3) or carbon-dioxide-rich (sites 
18 and 19, sheet 2; sites 40,44, and 56b, sheet 3). 



6 Professional Report I14 

Because these waters are usually not in chemical 
equilibrium application of geothermometers to 
these "immature" thermal waters may be 
inappropriate and interpreting temperatures based 
on the water's chemical composition must be 
carefully considered. 

We have applied silica and several cation 
geothermometers to Aleutian arc thermal water 
chemistry (table 3, sheet 4) (see Fournier, 1981, for a 
review of geothermometry). These geothermometers 
are most reliable for "chloride" thermal waters a$d 
are less certain for "mixed and peripheral" waters. 
They are probably not valid for steam-heated and 
"acid-volcanic" waters. The potassium-magnesium 
geothermometer is useful for evaluating low- 
temperature waters (Giggenbach, 1988), while the 
magnesium-lithium geothermometer was developed 
specifically for sedimentary formation waters 
(Kharaka and Mariner, 1989). The rate of the sulfate- 

water oxygen isotope exchange reaction is very slow 
compared with silica solubility and cation exchange 
reactions (McKenzie and Truesdell, 1977). Therefore, 
temperatures predicted by the sulfate-water oxygen 
isotope geothermometer serve as potential indicators 
of temperatures at greater depths. 

The results of stable isotope analysis of 94 
meteoric stream waters and precipitation collected in 
the Aleutian arc are shown in figure 5. Linear 
regression analysis shows that the best fit to these 
points is nearly identical to Craig's meteoric water 
line (1961). Also plotted are values for Bering Sea 
waters, Gulf of Alaska waters, and Standard mean 
ocean water (SMOW). Values for stable isotope 
compositions of Aleutian arc thermal waters are 
plotted in figure 6. The coincidence of most thermal- 
water values with meteoric-water values indicates that 
meteoric waters constitute the primary source of 
recharge for Aleutian arc hydrothermal systems. Some 

37 

am-heated waters 
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Figure 3. Relative Cl-, HC03-, and SO4-2 contents of Aleutian arc thermal waters 
on weight (mg/kg) basis (afer  Giggenbach and Goguel, 1989). Numbers re- 
fer to thermal-spring sites shown on sheets and listed in table 1 (sheet 4). 
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thermal waters have 6180 displaced +1 to +2 per mil 
from local meteoric water values (for example, sites 
13,20, sheet 2; fig. 6). Such positive shifts have been 
attributed to oxygen- 18 exchange between the deeply 
circulating meteoric waters and reservoir wallrocks. 
The degree of shift depends on temperature and on 
the rocWwater ratio (Truesdell and Hulston, 1980). 
Springs 5,41, and perhaps 40 may have been partially 
derived from connate brines. Such waters are typically 
enriched in deuterium and oxygen- 18 (Truesdell and 
Hulston, 1980). The relatively heavier stable-isotope 
composition of the boiling acid-sulfate waters at 
springs 7 and 22 is probably attributable to 
evaporative effects: the lighter isotopes fractionate 
into the vapor phase. 

Analysis of gas emissions collected from chloride 
thermal spring sites in the Aleutian arc are given in 
table 4 (sheet 4). Thermal-spring gases were collected 
by immersing a funnel connected to an evacuated flask 
over a train of gas bubbles emerging from the hot 
spring or pool. When water in the funnel was 
displaced by gases, a stopcock was opened and the 
gases were collected in the evacuated flasks. Methane 
is the primary component at Cold Bay (site 31, 
sheet 2) and Port Moller (site 35, sheet 2), whereas 
carbon-dioxide predominates at Andrew Bay (site 5, 
sheet l), lower Glacier Valley (site 18, sheet 2), and 
Gas Rocks (site 41, sheet 3). Nitrogen is the major 
component at the remaining springs. The nitrogen- 
argon ratios at most sites are close to the atmospheric 

Figure 4. Relative N U + - K + - M ~ + ~  contents of Aleutian arc thermal waters on weight (mgkg)  basis (afrer 
Giggenbach and Goguel, 1989). Nu-K-Mg temperatures from Giggenbach (1988). Numbers refer to 
thermal-spring sites shown on sheets and listed in table 1 (sheet 4). 
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ratio (-84) or lie between the air ratio and air- 
saturated groundwater (-34) ratios, indicating that 
nitrogen and argon are largely derived from air. 
Because of oxidation reactions, oxygen is usually 
only present in very minute quantities in equilibrated 
hydrothermal fluids. Its presence in measurable 
amounts indicates air contamination. Except for Hot 
Springs Bay (site 23, sheet 2), the gas emissions are 
commonly depleted in hydrogen sulfide and 
hydrogen when compared with fumarolic gases 
(table 4, sheet 4). Oxidation and other reactions 
probably removed these gases from the thermal water, 
and methane is probably of thermo-biogenic origin. 
We suspect that the carbon dioxide is mostly derived 
from magmatic sources although some carbon 
dioxide may be thermo-biogenic in origin. 

Most Aleutian arc chloride thermal springs 
probably originate as meteoric waters that circulate 
along fracture and fault systems produced by tectonic 
forces associated with the collision of the Pacific and 
North American lithospheric plates. Waters that 
circulate through the fractures are heated by thermal 
conduction from the surrounding rock and, in some 
cases, by direct absorption of volcanic steam and 
gases. Near active volcanism, heat is supplied by 
magmatic sources; at locations farther from 
volcanoes, heat is supplied by the regional heat flux. 
Net enthalpy per kilogram of discharge from each 
spring area was calculated as the difference between 
the discharge temperature and an assumed reference 
temperature of 10°C at the land surface. The total 
heat discharged at the surface by thermal springs in 
the Aleutian arc is conservatively estimated at 78 MW. 

F'UMAROLES 

Fumaroles are found at numerous geothermal 
sites in the Aleutian arc. In many cases, they are the 
dominant surface manifestation of the hydrothermal 
resource (table 1, sheet 4). We distinguish between 
"geothermal" and "volcanic" fumaroles primarily by 
their spatial association with active volcanic vents. 
In the Aleutain arc, "geothermal" fumaroles typically 
lie at mid-elevations on the flanks of volcanoes, 
relatively distant from an obvious volcanic vent. The 
fumaroles usually occur in clusters that cover several 
to tens of hectares in area, and commonly are 
associated with steam-heated or acid-sulfate springs. 
Hydrothermal alteration is usually widespread and 
ubiquitous, indicating long-term fumarolic activity. 
In some cases, chloride thermal springs may emerge 

at lower elevations (for example, sites 13, 19, and 
22, sheet 2). Aleutian arc "geothermal" fumaroles 
are typically at boiling point temperatures. Carbon 
dioxide is the dominant dry-gas component, and 
hydrogen sulfide is the only sulfur gas present 
(table 4, sheet 4). We presume these fumaroles are 
the surface expressions of boiling, subsurface, liquid- 
dominated hydrothermal systems, although at a few 
locations in the world such fumaroles reflect deep, 
vapor-dominated systems (for example, Geysers, 
California, and Lardellero, Italy). Although magma 
is probably the heat source and probably contributes 
carbon dioxide, sulfur gases, and halogens to the 
overlying liquid-dominated hydrothermal systems, 
"geothermal" fumarolic gas compositions are 
controlled by water-gas-rock interactions and boiling 
within the hydrothermal reservoir. 

In contrast, fumaroles associated with volcanic 
vents are commonly superheated and may emit 
sulfur-dioxide and halogen-rich gases (table 5, 
sheet 4). Steam content is highly variable, and in 
some cases sulfur gases equal or exceed carbon 
dioxide as the dominant dry-gas component. 
"Volcanic" fumaroles are located on the floors, rims, 
and flanks of active craters (sites 17, sheet 2; sites 
43,s  1, and 56, sheet 3); on active lava domes (sites 
44 and 52, sheet 3); and on the cones and summits 
of active volcanoes (sites 16, sheet 2; sites 46, and 
47, sheet 3). Their location and correlation with 
volcanic activity and gas chemistry suggest a more 
direct connection to magmatic sources with 
fumarolic compositions controlled by magma- and 
rock-gas interactions (sites 51 and 52, sheet 3). In 
some cases, meteoric water may flood and quench 
the surface of residual magma to create a boiling 
hydrothermal layer and give rise to "geothermal" gas 
emissions (sites 17, sheet 2; site 56, sheet 3). 
Although it is unlikely that volcanic vents will be 
commercially developed for geothermal energy, 
"volcanic" gas samples provide useful information 
on the magmatic heat sources that may underlie 
geothermal systems and serve as a reference for 
comparison with "geothermal" gas emissions. 

Because oxygen in fumarole gases should be 
virtually nonexistent, any oxygen detected in our 
samples is attributed to air contamination. Most 
"geothermal" and "volcanic" fumaroles have 
nitrogen-argon ratios that lie between atmospheric 
(-84) and air-saturated groundwater (-34) ratios, 
indicating an atmospheric origin for the nitrogen and 
argon, with oxygen removed in oxidation reactions. 
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Figure 5. Stable isotope composition of meteoric waters in the Aleutian arc. Standard 
mean ocean water (SMOW), Bering Sea waters, Gulf of Alaska waters, and Craig 
(1961) meteoric waterline shown for comparison. Dotted line represents linear 
regression fit to Aleutian and Alaska Peninsula meteoric water data. 
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Figure 6. Stable-isotope composition of thermal waters in the Aleutian arc. Craig 
(1961) meteoric waterline shown for comparison. Numbers refer to thermal-spring 
sites shown on sheets and listed in table 1 (sheet 4). 
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In some cases, the nitrogen-argon ratio substantially 
exceeds the atmospheric ratio. The excess nitrogen 
may be derived from a magmatic source. 

A magmatic influence on the Aleutian arc 
fumarole fluids is supported by helium isotope ratios, 
where R/Ra is the ratio of 3HeI4He in the sample to 
3HeI4He in the atmosphere (table 6, sheet 4). This 
ratio ranges from 6.5 to 8.0 for Aleutian arc "volcanic" 
fumaroles compared to 8 + 1 for mid-ocean-ridge 
basalts (Poreda and Craig, 1989). Values for Aleutain 
arc "geothermal" fields range from 2.1 at Port Moller 
(site 35, sheet 3) to 7.5 at Geyser Bight (site 13, 
sheet 2). The lower values are probably caused by 
mixing of varying proportions of crustal helium 
(R/Ra<0.02) with mantle-derived helium. 

Although a few sites have isotopic values of 
613C-C02 that lie within the range of mantle-derived 
carbon dioxide (-4 to -9 per mil), 613C-C02 values 
for most Aleutian arc fumaroles are lighter than 
mantle carbon dioxide, but lie within the range for 
marine organic carbon (-7 to - 17 per mil; Truesdell 
and Hulston, 1980; table 6, sheet 4). These ranges 
allow for the possibility that Aleutian arc fumarolic 
carbon dioxide is a mixture of mantle carbon diox- 
ide and carbon dioxide derived from marine-organic 
sources. 

Using empirical data, D'Amore and Panichi 
(1980) devised a gas geothermometer to estimate 
geothermal reservoir temperatures based on the 
proportions of carbon dioxide, hydrogen sulfide, 
hydrogen, and methane in geothermal fumarolic gases. 
The geothermometer, which assumes a gas-water-rock 
equilibrium in a hydrothermal system and 
preservation of this "deep" equilibrium composition 
in the emergent gases, was applied to geothermal 
fumarolic gases using an assumed partial pressure for 
carbon dioxide of 1 bar (table 4, sheet 4). These 
temperature estimates must be treated cautiously 
because gas-rock interactions and oxidation reactions 
with entrained air can affect gas composition, 
particularly hydrogen and hydrogen sulfide, during 
fluid ascent and sampling. To circumvent some of 
the problems of multi-component geothermomters, 
Giggenbach and Goguel (1989) devised gas 
geothermometers based on isomolar concentrations 
of hydrogen and carbon dioxide with respect to argon. 
Argon was chosen because it is inert and because it is 
introduced almost exclusively with the meteoric water 
component that forms the bulk of most geothermal 
waters. Results of applying the hydrogen-argon and 
carbon dioxide-argon geothermometers to Aleutian 

arc geothermal fumaroles are shown in table 4 (sheet 
4). Temperatures predicted by these two 
geothermometers are similar, but generally lower than 
estimates obtained from the D'Amore and Panichi 
(1980) geothermometer. The highest temperatures 
estimated by gas geothermometry are 300°C (Milky 
River, site 9, sheet 1; upper Glacier Valley, site 19, 
sheet 2). 

These geothermal geothermometers were not 
applied to volcanic vent fumaroles because of 
uncertainties about the environment of subsurface 
volcanic gas equilibration. Subsurface temperatures 
at these sites probably exceed 150°C. Where sulfide 
and halogen gases are emitted from fumarolic vents, 
gas source temperatures probably exceed 350°C. 
Methods for reconstructing subsurface volcanic gas 
assemblages and determining equilibrium tempera- 
tures from fumarolic gas compositions have been 
developed by Reed and Symonds (1992) and 
Giggenbach (1987). These methods have been applied 
to Augustine (site 52, sheet 3) 1984 samples (Kodosky 
and others, 1991; Te-800°C); post-eruptive 1986 
Augustine gas samples (Symonds and others, 1990; 
Te>1 ,200°C); and to samples from Katmai National 
Park (Sheppard and others, 1992; Te>600°C). 

RESOURCE BASE 

We evaluated the Aleutian arc geothermal 
resource base according to methods developed by 
White and Williams (1975) and Muffler (1979). Our 
expanded data base, acquired since 1979, allowed us 
to identify several hydrothermal systems that were 
not reported in earlier assessments of the geothermal 
resources of the Aleutian arc. At least 14 sites 
potentially host high-temperature (> 1 50°C) 
hydrothermal reservoirs; four sites host intermediate- 
temperature systems (90 to 15O0C); and six sites host 
low-temperature systems (<90°C; table 7, sheet 4). 
Geothermal drilling in 1983 and 1984 confirmed a 
liquid-dominated hydrothermal resource of at least 
195°C at Makushin Valley (site 20, sheet 2). Reservoir 
temperatures for Makushin Valley and the remaining 
geothermal sites were estimated using applicable 
geothermometers (table 7, sheet 4). Mean reservoir 
temperatures are based on the average of minimum, 
maximum, and most likely temperatures determined 
by geothermometry, geothermal well temperature 
(sites 20 and 21, sheet 2), and thermal-spring vent 
temperature (site 28, sheet 2) following methods 
similar to those described in Brook and others (1 979). 
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At least 20 other sites probably have reservoirs with 
temperatures >150°C (table 8, sheet 4), but 
development of these sites is unlikely because they 
are located on or near active volcanic vents or in 
national conservation units. 

The amount of thermal energy stored in the 
Accessible Resource Base as defined by Brook and 
others (1979) is estimated at 42x1018 J for the 
14 high-temperature systems; 3.8x1018 J for the 
four intermediate-temperature systems; and 
0.9~1018 J for the six low-temperature systems 
(table 7, sheet 4). For T>90°C, these estimates are 
based on an assumed mean reservoir thickness of 
1.67 km3 (Mariner and others, 1978). Estimates of 
reservoir area are based on the surface expression of 
the geothermal resource. Where a single group of 
springs or fumaroles are the only evidence of a 
reservoir, the subsurface reservoir volume is estimated 
to be 3.3 km3 (Mariner and others, 1978; Brook and 
others, 1979) and 1 km3 for T<90°C (Sorey and 
others, 1983). Heat energy in the reservoir is 
referenced to 15°C as defined by Brook and others 
(1979). Wellhead thermal energy, available work, 
electrical energy, and beneficial heat were calculated 
using methods described in Brook and others (1979). 
We estimate that the combined 30-yr electric-power- 
production potential for the 14high-temperature sites 
> 1,000 MW. 

A much greater store of geothermal energy 
resides in shallow magma chambers and hot rock 
beneath volcanic edifices (table 2, sheet 4), but 
estimates of the heat content of these magmas are 
highly speculative. Using estimates of high-level 
magma-chamber volumes and radiometric ages of 
the youngest related volcanism, Smith and Shaw 
(1975; 1979) estimate that 12x1021 J of thermal energy 
remains in Aleutian arc igneous systems. Given the 
highly speculative nature of estimating igneous-related 
thermal energy and the improbability that technological 
advances will allow commercial development of such 
resources in the foreseeable future, further refinement 
of these estimates is not justified. 

PRESENT USE 

A test well drilled near the head of Makushin 
Valley (site 20, sheet 2) on northern Unalaska Island, 
as part of a state-funded geothermal exploration 
program, successfully produced 195°C water from a 
depth of 590 m (Republic Geothermal, Inc., 1983, 
1984, 1985; Motyka and others, 1988). Battle 

Mountain Gold Company purchased the land and 
leased the geothermal resource to OESI Power 
Corporation (formerly Ormat Energy, Inc.). The 
Alaska Energy Authority has analyzed OESI's plans 
to develop a 12 MW geothermal power plant at the 
site. The project would provide base load power to 
the residents of the city of Unalaska and to the fishing 
and shipping industry at the international Port of 
Dutch Harbor. If developed, Makushin Valley would 
be the first site in Alaska to use geothermal energy to 
produce electric power. 

The state of Alaska has leased two tracts 
southeast of Mount Spurr to a private company for 
geothermal development. The lease-holders have 
announced plans to develop the site for hydroponic 
gardening, but no action has been taken. During a 
pilot geothermal-drilling program sponsored by the 
Alaska Division of Energy and Power Development 
(now the Alaska Energy Authority), a shallow, warm- 
water aquifer was delineated at Summer Bay (site 21, 
sheet 2) at a depth of about 50 m. Unfortunately, the 
flow rate and resource temperature were too low to 
use for direct-heat applications. 

Several scientific studies have been conducted 
in Katmai National Park as part of the Katmai Sci- 
entific Drilling Project, an interdisciplinary surface 
and drilling investigation of the 1912 eruption from 
Novarupta. The surface phase of the investigation 
has been completed, and plans call for drilling two 
core holes into the vent and one through the ash- 
flow sheet in 1994-95. The drilling must first be ap- 
proved by the National Park Service following 
completion of an Environmental Impact Statement. 

Little or no development has occurred at thermal 
sites elsewhere in the Aleutian arc, largely because 
of their remoteness and the costs associated with 
developing resources in remote localities. Several 
thermal-spring areas located near villages are used 
as recreational sites: Andrew Bay (site 5, sheet I), 
Hot Springs Bay (site 23, sheet 2), Port Moller 
(site 35, sheet 3), and False Pass (site 28, sheet 2). 
Early historic accounts suggest that thermal springs 
on northeast Atka Island and on Umnak Island may 
have been used by native populations for recreational 
and ceremonial purposes. 

FUTURE USE 

Most remote thermal sites in the Aleutian arc 
will probably remain undeveloped, particularly those 
located within national conservation units. However, 
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in addition to Makushin Valley, three sites located 
near population centers have excellent potential for 
future development. These include sites on northern 
Adak Island near the Adak Naval Station, sites on 
northern Atka Island near the Atka village, and Hot 
Springs Bay, near Akutan village. Development of 
the latter site is particularly attractive because of its 
accessibility from the sea and its proximity (4 km) 
to Akutan Harbor and village. Other sites that warrant 
consideration for future development are the Geyser 
Bight geothermal area on Umnak Island, Glacier 
Valley in the Makushin geothermal area, and the 
Mount Spurr area, west of Anchorage. Land at these 
sites is owned by Native corporations or by the state of 
Alaska. High-temperature (T>150°C) hydrothermal 
systems that are capable of producing electric power 
have been identified at each of these sites. 
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