UNITED STATES DEPARTMENT OF THE INTERIOR
GEOLOGICAL SURVEY

Processed strong-motion records
from the southern Alaska earthquake of January 1, 1975, 0355 GMT

by

B.L. Silverstein, A.G. Brady, and P.N. Mork

Open-File Report 86-191

This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards. Any use of trade names is for descriptive purposes only and does not imply endorsement by the USGS.

Menlo Park, California
February 1986
CONTENTS

Introduction ... 1
Cooperative Endeavors ... 1
Processed Records from the January 1, 1975, 0355 Gmt
southern Alaska Earthquake ... 3
Description of Records .. 3
Seismological Data .. 3
Station and Geologic Data ... 3
Digitizing and Processing ... 5
Processing Considerations for these Records 7
Results/Summary ... 7
Acknowledgements ... 7
References ... 8

Tables

1. Source parameters for January 1, 1975, southern Alaska
 earthquake .. 9
2. Peak values of processed records 10

Figures

1. Epicenter and instrument locations 11
2. Copies of original records .. 12
3. Uncorrected accelerogram for Anchorage, Alaska, 500 West
 Third, processed without using a reference time 18

Appendices

I. Computer Plots .. 19
II. Current list of processed records 92
CONTENTS

<table>
<thead>
<tr>
<th>Station</th>
<th>Page No. for plots of six processing steps*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Anchorage 500 W. Third Basement 135, Up, 045</td>
<td>20</td>
</tr>
<tr>
<td>Current Name: Westward Hotel</td>
<td></td>
</tr>
<tr>
<td>Anchorage Alaskan Methodist University 315, Up, 225</td>
<td>22</td>
</tr>
<tr>
<td>Current Name: Gould Hall, APU</td>
<td></td>
</tr>
<tr>
<td>Anchorage Government Hospital 360, Up, 270</td>
<td>23</td>
</tr>
<tr>
<td>Current Name: Alaska Native Med. Ctr.</td>
<td></td>
</tr>
<tr>
<td>Talkeetna FAA-VOR Building 165, Up, 075</td>
<td>24</td>
</tr>
</tbody>
</table>

*Processing stages and plot format:

1) Uncorrected acceleration
2) Corrected acceleration, velocity, displacement
3) Relative velocity response spectrum, linear plot
4) Response spectrum, tripartite log-log plot
5) Fourier amplitude spectrum, linear plot
6) Fourier amplitude spectrum, log-log plot

In column 1 each plot contains all three components. For columns 2 through 6, the indicated page number refers to the first of three components for this record.
INTRODUCTION

The U.S. Geological Survey Permanent Strong-Motion Network

In a continuing effort to present processed strong-motion earthquake data to the engineering and seismological communities and the general public, the U.S. Geological Survey (USGS) maintains a nation-wide network of federally-owned permanent strong-motion earthquake recorders, and routinely processes and reports on significant records obtained from them. The network also includes instruments owned by other federal agencies, but maintained by the USGS. The production of reports is sometimes made jointly, for example with the California Division of Mines and Geology (CDMG), to coordinate records obtained simultaneously from the recorders of various other federal, state, and local agencies.

The main reasons for these reports are to present the computer plots of corrected accelerograms and their spectra, and to provide sufficient additional information on the earthquakes, stations, records, and results so that the reader may make an intelligent decision whether further study is warranted. Lists of completed reports and their contents are given in Appendix II. Digital data is usually available on tape from the National Geophysical Data Center (NGDC), NOAA, Mail Stop E/GC11, 325 Broadway, Boulder, Colorado 80303.

Cooperative Endeavors

The permanent strong-motion network is managed by several projects within the USGS. The program and its predecessors have been involved with strong-motion accelerogram recording and processing since the early 1930's. As procedures and techniques have improved within the areas of network planning, instrument maintenance, record processing, and associated research, the program has been able to exchange knowledge in cooperative efforts with other agencies in the field of strong-motion earthquake engineering and engineering seismology.
Cooperative efforts have included those with:

a) Federal agencies such as the Bureau of Reclamation, the Army Corps of Engineers, the Veterans Administration, the Federal Highways Administration, and others.

b) State agencies such as the California Division of Mines and Geology, the California Department of Water Resources, the Washington State Highways Administration, and others.

c) Universities such as the California Institute of Technology, the University of Southern California, Columbia University, and others.

d) Foreign and domestic agencies sometimes jointly responsible for strong-motion networks in Fiji, Greece, Italy, Papua New Guinea, The Soviet Union, Yugoslavia, and others.
PROCESSED RECORDS FROM THE JANUARY 1, 1975, 0355 GMT

SOUTHERN ALASKAN EARTHQUAKE

Four stations from the slowly developing network in Anchorage, plus the station in Talkeetna, provided records from this MB 5.9 event. Previous Anchorage records had been lone ones, dating back to the aftershocks of the 1964 Prince William Sound, Alaska, earthquake. Under normal circumstances, this set, with peak values less than 0.1 g, would not have been digitized. Interest, and a request from the USGS in Golden, Colorado resulted in the processing of three ground level records in Anchorage, and the Talkeetna record. The fourth Anchorage record, from the Post Office, was not suitable for digitizing.

Description of Records

The peak accelerations (Seismic Engineering Branch, 1975) recorded were: Talkeetna (approx. 49 km epicentral distance) with a peak of 0.09 g; and of the stations in Anchorage (approx. 79 km epicentral distance) the largest peak was 0.09 g at the Methodist University. A complete list of peak values and other information for this event are in Table I.

Seismological Data

The January 1, 1975, 0355:12.0 GMT event occurred at a depth of 66 km and at a location of 61.9 degrees N. and 149.7 degrees W. This location is N of Anchorage and SE of Talkeetna. The magnitude was MB 5.9 (see Table I).

Station and Geologic Data

The following information (Switzer and others, 1981) briefly describes the accelerograph sites pertinent to this report:

Anchorage Stations:

500 West Third Street: A 22-story building with instruments in the basement and on the roof. Surficial geology is glacial outwash.
Alaskan Methodist University: A two-story building with the instrument located at ground level. Located on approximately 120 m of glacial till.

Government Hospital: A three-story building with the instrument located in the basement. Surficial geology is glacial outwash.

Talkeetna:

FAA-VOR Building: A one-story building with the instrument located at ground level.
DIGITIZATION AND PROCESSING

Current USGS Processing

1. A commercial digitizing firm (IOM-TOWILL in Santa Clara, California) digitizes the records on a trace-following, computer-controlled laser scanner. The data is digitized at unequal time intervals, (although close to equispaced in time when clear of sharp peaks), at an average of 600 samples per second (sps). Those records on 12" wide photographic paper are photographically reduced to 1/4 original size so that all three traces and the time marks can be digitized in one horizontal panel. Although the acceleration and time scales are reduced proportionately, a full-scale check of the digitized version matches perfectly with the original 12" record.

2. If more than 10 cm of a strong-motion record is digitized (film speed is 1 cm/s), the digitized portion is divided into approximately 10-cm frames and each frame is digitized separately with one inch overlaps. The frames are reassembled using specially inserted vertical lines; the lines mark the beginning and end of each frame. Each vertical line is digitized twice, once in each adjacent frame, and then used in reassembling the record.

3. The uncorrected data are prepared by subtracting the digitized reference traces from the data traces, by using the digitized time marks to determine the time scale, and by subtracting the mean. The instrument sensitivities scale the ordinates to acceleration.

4. The data are passed through a correction algorithm that applies a high-frequency, 50 Hz, low-pass filter; an instrument correction; a base-line correction in the form of a long-period (or low-frequency, high-pass) filter; and decimation to 200 sps. Plots of the corrected
acceleration, velocity, and displacement for the three components of each record are included.

Initial selection of long-period filters is based on the convention of retaining a period content greater than or equal to the strong-motion duration of the records. The final Butterworth filter parameters are chosen to eliminate any visible serious noise content still remaining in the calculated displacements, taking into account the guidelines described in Basili and Brady (1978).

In some instances a frequency domain filter with a transition band of 25-50 Hz is applied to eliminate high frequency noise that sometimes occurs during the digitization of low-amplitude records. The latter replaces the standard time-domain method.

5. The maximum relative velocity response spectra are calculated for damping values of 0, 2, 5, 10, and 20 percent of critical. These response spectra are calculated for a period range which commences at 0.04 s and ends with the long period limit used in the base-line correction algorithm. The dashed curve on this plot is the unsmoothed Fourier amplitude spectrum, calculated at the same periods as the response spectra are calculated.

The second response spectra plot contains the pseudo-velocity response spectra, calculated for the same five damping values. This tripartite plot also has the values for the maximum relative displacement response spectrum and the pseudo-absolute acceleration spectrum.

6. Fourier amplitude spectra, calculated by FFT, are presented on linear and log-log axes to accent the particular characteristics at each end of the spectrum.
For a more complete description of the processing method see Converse (1984).

Processing Considerations for Records in this Report

The first 2-3 seconds of the three data traces on the uncorrected record from 500 W. Third, Basement, have a non-zero start and similar downward slopes, indicating a problem with the subtraction of the reference trace. (The original record has no reference traces and the digitized time trace was used for both time trace and reference trace). In an unsuccessful effort to correct this problem, the data traces were processed with no reference trace (Fig. 3). Since these plots clearly indicate that the motion of the film through the camera must be corrected with a reference trace, even if less than ideal, we decided to use the original results and rely on the subsequent processing to make the correction.

Results/Summary

Appendix I contains reproductions of computer-generated plots which provide a visual description of the recorded accelerations and their processed results. These plots may be used to measure directly specific earthquake characteristics or record parameters and to select records for further study using the digital data.

ACKNOWLEDGMENTS

Modern digital processing of strong-motion accelerograms has evolved over many years, from the work of Trifunac and Lee at Cal Tech and of Virgilio Perez at the USGS, to the present ongoing refinements of the process in April Converse' AGRAM series. The authors acknowledge these and other contributions to strong-motion data processing.
REFERENCES

Table I. Source parameters for January 1, 1975, southern Alaska earthquake*

<table>
<thead>
<tr>
<th>Date</th>
<th>1/1/75</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time</td>
<td>0355 12.0 GMT</td>
</tr>
<tr>
<td>Epicenter</td>
<td>61.9° N., 149.7° W.</td>
</tr>
<tr>
<td>Depth</td>
<td>66 km</td>
</tr>
<tr>
<td>Magnitude</td>
<td>5.9 MB</td>
</tr>
</tbody>
</table>

Table II. Peak values of processed records

<table>
<thead>
<tr>
<th>Earthquake</th>
<th>Station</th>
<th>Coordinates</th>
<th>Distances (km)</th>
<th>Components</th>
<th>Directions</th>
<th>Epic. Hypo.</th>
<th>Peak Acceleration</th>
<th>Corrected Peak Motion</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 1, 1975</td>
<td>Anchorage, 500 W. Third St., Basement</td>
<td>61.220 N 149.892 W</td>
<td>76 101</td>
<td>135°</td>
<td>UP</td>
<td>0.05</td>
<td>49.15</td>
<td>49.00 -5.15 -0.68</td>
</tr>
<tr>
<td>0355 12.0 GMT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epicenter:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61.9 N</td>
<td>Anchorage, Alaska Methodist University</td>
<td>61.189 N 149.801 W</td>
<td>79 103</td>
<td>315°</td>
<td>UP</td>
<td>0.07</td>
<td>57.72</td>
<td>60.17 -2.64 0.34</td>
</tr>
<tr>
<td>149.7 W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anchorage</td>
<td>Government Hospital</td>
<td>61.19 N 149.89 W</td>
<td>80 103</td>
<td>360°</td>
<td>UP</td>
<td>0.07</td>
<td>68.76</td>
<td>-70.40 4.46 0.62</td>
</tr>
<tr>
<td>Talkeetna</td>
<td>FAA-VOR Bldg.</td>
<td>62.30 N 150.10 W</td>
<td>49 82</td>
<td>165°</td>
<td>UP</td>
<td>0.07</td>
<td>72.48</td>
<td>-75.55 5.39 -0.87</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(All distance ± 10 km)
Figure 1: Epicenter and instrument locations.
Figure 2: Copies of original records.
ALASKA
JANUARY 1, 1975 0355 UTC

ANCHORAGE 500 W. THIRD (ROOF)

135°

Up

45°

5 sec

Fig. 2: (cont.)
ALASKA
JANUARY 1, 1975 0355 UTC

ANCHORAGE GOVERNMENT HOSPITAL

360°

Up

270°

5 sec

Fig. 2: (cont.)
ALASKA
JANUARY 1, 1975 0355 UTC

TALKEETNA FAA-VOR BLDG.

165°

Up

75°

--- 5 sec ---
Fig. 3. Processed without using a reference trace
Appendix I

Computer Plots
UNCORRECTED ACCELEROMETER
ANCHORAGE, ALASKAN METHODIST UNIVERSITY
315 DEGREES, UP. 225 DEGREES
EARTHQUAKE OF 1 JANUARY, 1975, 0355 UTC
PEAK VALUES (CM/SEC/SEC): 57.72 30.92 83.83

Scaled Instrument Response
CM/SEC/SEC

Scaled Instrument Response
CM/SEC/SEC

Scaled Instrument Response
CM/SEC/SEC

Scaled Instrument Response
CM/SEC/SEC

Seconds
Scaled Instrument Response CM/SEC/SEC

Peak values (CM/SEC/SEC): -60.22 - 59.76 - 45.84 - 70.22

Earthquake of January 1, 1975, 0355 UTC

Anchorage, Alaska, THIRP and GEMD (G0Y1 H0SP)
UNCORRECTED ACCELEROMGRAM
TALKEETNA, ALASKA F.A.A-VOR BUILDING
165 DEGREES, UP, 075 DEGREES
EARTHQUAKE OF JANUARY 1, 1975 0355 UTC
PEAK VALUES (CM/SEC/SEC): -72.48 85.46 74.60

Scaled Instrument Response CM/SEC/SEC

Railroad

Scaled Instrument Response CM/SEC/SEC

Player

Scaled Instrument Response CM/SEC/SEC

Seconnd

Scaled Instrument Response CM/SEC/SEC

Second
Scaled Instrument
Response
CM/SEC/SEC

Peak Value: 13.5 cm/sec/sec
Earthquake of January 1, 1975, 0355 UTC
155 degrees, up, 075 degrees
Talkeetna, Alaska
RHR-YPN Building
Uncorrected Accelerogram
CORRECTED ACCELERATION, VELOCITY, AND DISPLACEMENT 200.00 SPS
ANCHORAGE, ALASKA 500 W. THIRD (BSMT)
135 DEGREES
EARTHQUAKE OF JANUARY 1, 1975, 0355 UTC
BUTTERWORTH FILTER AT 0.50 HZ, ORDER 4
PEAK VALUES: ACCEL=49.00 CM/SEC/SEC, VELOCITY=-5.15 CM/SEC, DISPL=-0.68 CM

ACCELERATION
CM/SEC/SEC

(CONTINUED)

VELOCITY
CM/SEC

(CONTINUED)

DISPLACEMENT
CM

(CONTINUED)

SECONDS
CORRECTED ACCELERATION, VELOCITY, AND DISPLACEMENT 200.00 SPS
ANCHORAGE, ALASKA 500 W. THIRD (BASMT)
UP
EARTHQUAKE OF JANUARY 1, 1975 0355 UTC
BUTTERWORTH FILTER AT 0.50 HZ ORDER 4
PEAK VALUES: ACCEL=-19.85 CM/SEC/SEC, VELOCITY=1.27 CM/SEC, DISPL=-0.17 CM
CORRECTED ACCELERATION, VELOCITY, AND DISPLACEMENT 200.00 SPS
ANCHORAGE, ALASKA 500 W. THIRD (BASMT)

EARTHQUAKE OF JANUARY 1, 1975, 0355 UTC
BUTTERWORTH FILTER AT 0.50 HZ, ORDER 4
PEAK VALUES: ACCEL=-18.85 CM/SEC/SEC, VELOCITY=1.27 CM/SEC, DISPL=-0.17 CM

ACCELERATION CM/SEC/SEC

VELOCITY CM/SEC

DISPLACEMENT CM

SECONDS
Seconds

Displacement cm

Velocity cm/sec

Acceleration cm/sec/sec

Peak values: Acceleration = 40.40 cm/sec/sec, Velocity = 2.79 cm/sec, Displacement = 0.31 cm

Earthquake of January 1975, 0355 UTC

Alaska, 500 M. THIRD (BSMT)
PEAK VALUES: ACCEL=44.40 CM/SEC^2, VELOCITY=-2.79 CM/SEC, DISPL=-0.31 CM

EARTHQUAKE OF JANUARY 1, 1978, AKSS VC
ANCHORAGE, ALASKA 550 W. 14140 (65TH)

CORRECTED ACCELERATION, VELOCITY, AND DISPLACEMENT 200.00 SPS
CORRECTED ACCELERATION, VELOCITY, AND DISPLACEMENT 200.00 SPS
ANCHORAGE, ALASKAN METHODIST UNIVERSITY
315 DEGREES
EARTHQUAKE OF 1 JANUARY, 1975, 0355 UTC
BUTTERWORTH FILTER AT 0.50 HZ, ORDER 4
PEAK VALUES: ACCEL = 60.17 CM/SEC/SEC, VELOCITY = -2.64 CM/SEC, DISPL = 0.34 CM
CORRECTED ACCELERATION, VELOCITY, AND DISPLACEMENT 200.00 SPS
ANCHORAGE, ALASKAN METHODIST UNIVERSITY

EARTHQUAKE OF 1 JANUARY, 1975, 0355 UTC
BUTTERWORTH FILTER AT 0.50 HZ, ORDER 4

PEAK VALUES: ACCEL=57.24 CM/SEC/SEC, VELOCITY=0.86 CM/SEC, DISPL=-0.16 CM
CORRECTED ACCELERATION, VELOCITY, AND DISPLACEMENT 200.00 SPS
ANCHORAGE, ALASKAN METHODIST UNIVERSITY
225 DEGREES
EARTHQUAKE OF 1 JANUARY, 1975, 0355 UTC
BUTTERWORTH FILTER AT 0.50 Hz, ORDER 4
PEAK VALUES: ACCEL=96.97 CM/SEC/SEC, VELOCITY=2.91 CM/SEC, DISPL=0.19 CM
CORRECTED ACCELERATION, VELOCITY, AND DISPLACEMENT 200.00 SPS
ANCHORAGE, ALASKA THIRD AND GAMBEL (GOVT HOSP)
360 DEGREES
EARTHQUAKE OF JANUARY 1, 1975 0355 UTC
BUTERWORTH FILTER AT 0.50 Hz, ORDER 4
PEAK VALUES: ACCEL=-70.40 CM/SEC/SEC, VELOCITY=4.45 CM/SEC, DISPL=0.62 CM
CORRECTED ACCELERATION, VELOCITY, AND DISPLACEMENT 200.00 SPS
ANCHORAGE, ALASKA THIRD AND GAMBE L (GOVT HOSP)
UP
EARTHQUAKE OF JANUARY 1, 1975 0355 UTC
BUTTERWORTH FILTER AT 0.50 HZ, ORDER 4
PEAK VALUES: ACCEL=-54.57 CM/SEC/SEC, VELOCITY=1.88 CM/SEC, DISPL=-0.24 CM
CORRECTED ACCELERATION, VELOCITY, AND DISPLACEMENT 200.00 SPS
ANCHORAGE, ALASKA THIRD AND GAMBEL (GOVT HOSP)
270 DEGREES
EARTHQUAKE OF JANUARY 1, 1975 0355 UTC
BUTERWORTH FILTER AT 0.50 HZ, ORDER 4
PEAK VALUES: ACCEL=-85.13 CM/SEC/SEC, VELOCITY=-4.19 CM/SEC, DISPL=0.50 CM
CORRECTED ACCELERATION, VELOCITY, AND DISPLACEMENT 200.00 SPS
TALKEETNA, ALASKA FAA-VOR BUILDING
165 DEGREES
EARTHQUAKE OF JANUARY 1, 1975, 0355 UTC
BUTTERWORTH FILTER AT 0.50 Hz, ORDER 4
PEAK VALUES: ACCEL=-75.55 CM/SEC/SEC, VELOCITY=5.39 CM/SEC, DISPL=-0.87 CM
CORRECTED ACCELERATION, VELOCITY, AND DISPLACEMENT 200.00 SPS
TALKEETNA, ALASKA, FAA-VOR BUILDING
165 DEGREES
EARTHQUAKE OF JANUARY 1, 1975, 0355 UTC
BUTTERWORTH FILTER AT 0.50 Hz, ORDER 4
PEAK VALUES: ACCEL=-75.55 CM/SEC/SEC, VELOCITY=5.39 CM/SEC, DISPL=-0.87 CM
CORRECTED ACCELERATION, VELOCITY, AND DISPLACEMENT 200.00 SPS
TALKEETNA, ALASKA FAR-VOR BUILDING

EARTHQUAKE OF JANUARY 1, 1975, 0355 UTC
BUTTERWORTH FILTER AT 0.50 HZ, ORDER 4

PEAK VALUES: ACCEL=-84.22 CM/SEC/SEC, VELOCITY=2.43 CM/SEC, DISPL=-0.20 CM
CORRECTED ACCELERATION, VELOCITY, AND DISPLACEMENT 200.00 SPS
TALKEETNA, ALASKA FAR-VOR BUILDING
EARTHQUAKE OF JANUARY 1, 1975, 0355 UTC
BUTTERWORTH FILTER AT 0.50 Hz, ORDER 4
PEAK VALUES: ACCEL=-84.22 CM/SEC/SEC, VELOCITY=2.43 CM/SEC, DISPL=-0.20 CM
CORRECTED ACCELERATION, VELOCITY, AND DISPLACEMENT 200.00 SPS
TALKEETNA, ALASKA FAA-VOR BUILDING
075 DEGREES
EARTHQUAKE OF JANUARY 1, 1975 0355 UTC
BUTTERWORTH FILTER AT 0.50 HZ, ORDER 4
PEAK VALUES: ACCEL=74.93 CM/SEC/SEC, VELOCITY=4.58 CM/SEC, DISPL=-0.65 CM

ACCELERATION
CM/SEC/SEC
-75.0
75.0

VELOCITY
CM/SEC
-4.60
4.60

DISPLACEMENT
CM
-0.66
0.66

SECONDS
CORRECTED ACCELERATION, VELOCITY, AND DISPLACEMENT 200.00 SPS
TALKEETNA, ALASKA FAA-VOR BUILDING
075 DEGREES
EARTHQUAKE OF JANUARY 1, 1975, 0355 UTC
BUTTERWORTH FILTER AT 0.50 HZ, ORDER 4
PEAK VALUES: ACCEL=74.93 CM/SEC/SEC, VELOCITY=4.58 CM/SEC, DISPL=-0.65 CM

CONTINUED

ACCELERATION CM/SEC/SEC

CONTINUED

VELOCITY CM/SEC

CONTINUED

DISPLACEMENT CM

SECONDS
RELATIVE VELOCITY RESPONSE SPECTRUM
ANCHORAGE, ALASKA 500 W. THIRD (BSMT), 1/01/75, 0355UTC 135
0.2, 5, 10, 20 PERCENT CRITICAL DAMPING
FILTERS: BUTTERWORTH, ORDER 4, 0.500 Hz; ANTI-ALIAS 50 - 100 Hz
NATIONAL STRONG MOTION DATA CENTER

UNCRAMPED NATURAL PERIOD-SECONDS

VELOCITY RESPONSE-CM/SEC
RELATIVE VELOCITY RESPONSE SPECTRUM
ANCHORAGE, ALASKA 500 W. THIRD (BSMT), 1/01/75, 0355 UTC UP
0.2, 5, 10, 20 PERCENT CRITICAL DAMPING
FILTERS: BUTTERWORTH, ORDER 4, 0.500 Hz; ANTIALIAS 50 - 100 Hz
NATIONAL STRONG MOTION DATA CENTER

--- RV
--- FAS

VELOCITY RESPONSE-CM/SEC

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3 7 11 15
UNDAMPED NATURAL PERIOD-SECONDS
RELATIVE VELOCITY RESPONSE SPECTRUM
ANCHORAGE, ALASKA 500 W. THIRD (6SMT), 1/01/75, 0355 UTC 45
0.2, 5, 10, 20 PERCENT CRITICAL DAMPING
FILTERS: BUTTERWORTH, ORDER 4. 0.500 Hz; ANTIALIAS 50 - 100 Hz
NATIONAL STRONG MOTION DATA CENTER

--- RV

--- FAS

VELOCITY RESPONSE - CM/SEC

UNDAMPED NATURAL PERIOD-SECONDS
RELATIVE VELOCITY RESPONSE SPECTRUM
ANCHORAGE, ALASKAN METHODIST UNIVERSITY, 1/01/75, 0355UTC 315
0.2, 5, 10, 20 PERCENT CRITICAL DAMPING
FILTERS: BUTTERWORTH, ORDER 4, 0.500 HZ; ANTI-ALIAS 50 - 100 HZ
NATIONAL STRONG MOTION DATA CENTER

VELOCITY RESPONSE - CM/SEC

UNDAMPED NATURAL PERIOD - SECONDS
RELATIVE VELOCITY RESPONSE SPECTRUM
ANCHORAGE, ALASKAN METHODIST UNIVERSITY, 1/01/75, 0355UTC UP
0.2, 5, 10, 20 PERCENT CRITICAL DAMPING
FILTERS: BUTTERWORTH, ORDER 4; 0.500 Hz; ANTIALIAS 50 - 100 Hz
NATIONAL STRONG MOTION DATA CENTER

VELOCITY RESPONSE cm/sec

UNDAMPED NATURAL PERIOD-SECONDS

RV
----- FAS
RELATIVE VELOCITY RESPONSE SPECTRUM
ANCHORAGE, ALASKAN METHODIST UNIVERSITY, 1/01/75, 0355 UTC 225
0.2, 5, 10, 20 PERCENT CRITICAL DAMPING
FILTERS: BUTTERWORTH, ORDER 4, 0.500 Hz; ANTIAXIS 50 - 100 Hz
NATIONAL STRONG MOTION DATA CENTER

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3 7 11 15
UNDAMPED NATURAL PERIOD-SECONDS

0 2 4 6 8 10 12 14 16 18 20 22 24
VELOCITY RESPONSE-CM/SEC
RELATIVE VELOCITY RESPONSE SPECTRUM
ANCHORAGE, ALASKA THIRD AND GAMBEL (GOVT HOSP), 1/01/75, 0355 UTC 360
0,2,5,10,20 PERCENT CRITICAL DAMPING
FILTERS: BUTTERWORTH, ORDER 4, 0.500 Hz; ANTIALIAS 50 - 100 Hz
NATIONAL STRONG MOTION DATA CENTER

VELOCI:Y RESPONSE-CM/SEC

UNDAMPED NATURAL PERIOD-SECONDS
RELATIVE VELOCITY RESPONSE SPECTRUM
ANCHORAGE, ALASKA THIRD AND GAMBEI (GOVT HOSP), 1/01/75, 0355UTC UP
0.2, 5, 10, 20 PERCENT CRITICAL DAMPING
FILTERS: BUTTERWORTH, ORDER 4, 0.500 Hz; ANTI-MIASS 50 - 100 Hz
NATIONAL STRONG MOTION DATA CENTER

--- RV
[Graph showing velocity response vs. undamped natural period seconds]

--- FAS
RELATIVE VELOCITY RESPONSE SPECTRUM
ANCHORAGE, ALASKA THIRD AND GAMBEI (GOVT HOSP), 1/01/75, 0355 UTC 270
0.2, 5, 10, 20 PERCENT CRITICAL DAMPING
FILTERS: BUTTERWORTH, ORDER 4, 0.500 HZ; ANTIALIAS 50 - 100 HZ

NATIONAL STRONG MOTION DATA CENTER

VELOCITY RESPONSE - CM/SEC

UNDAMPED NATURAL PERIOD - SECONDS

RV

FAS
RELATIVE VELOCITY RESPONSE SPECTRUM
TALKEETNA, ALASKA FAA-VOR BUILDING, 1/01/75, 0355UTC 165
0.2, 5, 10, 20 PERCENT CRITICAL DAMPING
FILTERS: BUTTERWORTH, ORDER 4, 0.500 Hz; ANTIALIAS 50 - 100 Hz
NATIONAL STRONG MOTION DATA CENTER

--- RV
--- FAS

VELOCITY RESPONSE-CM/SEC

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3 7 11 15
UNDAMPED NATURAL PERIOD-SECONDS
RELATIVE VELOCITY RESPONSE SPECTRUM
TALKEETNA, ALASKA FAA-VOR BUILDING, 1/01/75, 0355UTC
0.2, 5, 10, 20 PERCENT CRITICAL DAMPING
FILTERS: BUTTERWORTH, ORDER 4, 0.500 Hz; ANTI-ALIAS 50 - 100 Hz
NATIONAL STRONG MOTION DATA CENTER

VELOCITY RESPONSE-CM/SEC

UNDAMPED NATURAL PERIOD-SECONDS
RELATIVE VELOCITY RESPONSE SPECTRUM
TALKEETNA, ALASKA FAA-VOR BUILDING, 1/01/75, 0355UTC 75
0.2,5,10,20 PERCENT CRITICAL DAMPING
FILTERS: BUTTERWORTH, ORDER 4, 0.500 HZ; ANTIALIAS 50 - 100 HZ
NATIONAL STRONG MOTION DATA CENTER

VELOCITY RESPONSE-CM/SEC

UNDAMPED NATURAL PERIOD-SECONDS
RESPONSE SPECTRA
ANCHORAGE, ALASKA 500 W. THIRD (BSMT), 1/01/75, 0355 UTC 135
0.2, 5, 10, 20 PERCENT CRITICAL DAMPING
FILTERS: BUTTERWORTH, ORDER 4, 0.500 Hz; ANTIALIAS 50 - 100 Hz
NATIONAL STRONG MOTION DATA CENTER

UNDAMPED NATURAL PERIOD-SECONDS

VELOCITY RESPONSE-CM/SEC

1000.00
400.00
200.00
100.00
10.00
4.00
2.00
1.00
0.40
0.25
0.04
0.1
0.2
0.4
1
2
4
10
20
RESPONSE SPECTRA
ANCHORAGE, ALASKA 500 W. THIRD (85MT) 1/01/75, 0355 UTC UP
0.2, 5, 10, 20 PERCENT CRITICAL DAMPING
FILTERS: BUTTERWORTH, ORDER 4, 0.500 Hz; ANTIALIAS 50 - 100 Hz
NATIONAL STRONG MOTION DATA CENTER

VELOCITY RESPONSE-CM/SEC

ACCELERATION

UNDAMPED NATURAL PERIOD-SECONDS

10.000
40.000
20.000
10.000
4.000
2.000
1.000
0.400
0.200
0.100
0.040
0.020
0.04
0.1
0.2
0.4
1
2
4
10
20

NATIONAL STRONG MOTION DATA CENTER
RESPONSE SPECTRA
ANCHORAGE, ALASKA, 500 W. THIRD (BSMT), 1/01/75, 0355UTC
0.2, 5, 10, 20 PERCENT CRITICAL DAMPING
FILTERS: BUTTERWORTH, ORDER 4, 0.500 HZ; ANTIALIAS 50 - 100 HZ
NATIONAL STRONG MOTION DATA CENTER

VELOCY RESPONSE - CM/SEC

UNDAMPED NATURAL PERIOD-SECONDS
RESPONSE SPECTRA
ANCHORAGE, ALASKAN METHODIST UNIVERSITY, 1/01/75, 0355 UTC
0.25, 1.0, 20 PERCENT CRITICAL DAMPING
FILTERS: BUTTERWORTH, ORDER 4, 0.500 Hz; ANTIALIAS 50 - 100 Hz
NATIONAL STRONG MOTION DATA CENTER

VELOCITY RESPONSE-CM/SEC

UNDAMPED NATURAL PERIOD-SECONDS

0.04 0.1 0.2 0.4 1 2 4 10 20

1000.00
400.00
200.00
100.00
40.00
20.00
10.00
4.00
2.00
1.00
0.40
0.25

59
RESPONSE SPECTRA
ANCHORAGE, ALASKAN METHODIST UNIVERSITY, 1/01/75, 0355UTC
0.2, 5, 10, 20 PERCENT CRITICAL DAMPING
FILTERS: BUTTERWORTH, ORDER 4, 0.500 Hz; ANTIALIAS 50 - 100 Hz
NATIONAL STRONG MOTION DATA CENTER
RESPONSE SPECTRA
ANCHORAGE, ALASKAN METHODIST UNIVERSITY, 1/01/75, 0355UTC 225
0.2, 5, 10, 20 PERCENT CRITICAL DAMPING
FILTERS: BUTTERWORTH, ORDER 4, 0.500 Hz: ANTIALIARS 50 - 100 Hz
NATIONAL STRONG MOTION DATA CENTER
RESPONSE SPECTRA
ANCHORAGE, ALASKA THIRD AND GAMBEI (GOVT HOSP), 1/01/75, 0355UTC 360
0, 2, 5, 10, 20 PERCENT CRITICAL DAMPING
FILTERS: BUTTERWORTH, ORDER 4, 0.500 HZ; ANTIALIAS 50 - 100 HZ
NATIONAL STRONG MOTION DATA CENTER

UNDAMPED NATURAL PERIOD-SECONDS

VELOCITY RESPONSE-CM/SEC
RESPONSE SPECTRA
ANCHORAGE, ALASKA THIAD AND CAMEL (GOVT HOSP), 1/01/75, 0355UTC VP
0.2, 5, 10, 20 PERCENT CRITICAL DAMPING
FILTERS: BUTTERWORTH, ORDER 4, 0.500 Hz, ANTIALIAS 50 - 100 Hz
NATIONAL STRONG MOTION DATA CENTER

VELOCIY RESPONSE-CM/SEC

UNDAMPED NATURAL PERIOD-SECONDS
RESPONSE SPECTRA
ANCHORAGE, ALASKA THIRD AND GAMBE (GOVT HOSP), 1/01/75, 0355 UTC 270
0.2, 5, 10, 20 PERCENT CRITICAL DAMPING
FILTERS: BUTTERWORTH, ORDER 4, 0.500 HZ; ANTIALIAS 50 - 100 HZ
NATIONAL STRONG MOTION DATA CENTER
RESPONSE SPECTRA
TALKEETNA, ALASKA FAA-VOR BUILDING, 1/01/75, 0355UTC
0.2, 5, 10, 20 PERCENT CRITICAL DAMPING
FILTERS: BUTTERWORTH, ORDER 4; 0.500 HZ; ANTI-ALIAS 50 - 100 HZ
NATIONAL STRONG MOTION DATA CENTER
RESPONSE SPECTRA

TALKEETNA, ALASKA FAA-VOR BUILDING, 1/01/75, 0355UTC

0.2, 5, 10, 20 PERCENT CRITICAL DAMPING

FILTERS: BUTTERWORTH, ORDER 4, 0.500 Hz, ANTI-ALIAS 50 - 100 Hz

NATIONAL STRONG MOTION DATA CENTER

VELOCITY RESPONSE - CM/SEC

UNDAMPED NATURAL PERIOD-SECONDS
RESPONSE SPECTRA
TALKEETNA, ALASKA FAA-VOR BUILDING, 1/01/75, 0355UTC
0.2, 5, 10, 20 PERCENT CRITICAL DAMPING
FILTERS: BUTTERWORTH, ORDER 4, 0.500Hz; PNTIALIAS 50 - 100 Hz
NATIONAL STRONG MOTION DATA CENTER

VELOCITY RESPONSE-CM/SEC

ACCELERATION G

0.04 0.1 0.2 0.4 1 2 4 10 20
UNDAEMPED NATURAL PERIOD-SECONDS

1000.00
400.00
200.00
100.00
10.00
4.00
2.00
1.00
0.40
0.25
0.01
FIGURE

FOURIER AMPLITUDE SPECTRUM OF ACCELERATION.
ANCHORAGE, ALASKA 500 W. THIRD (BSMT)
135 DEGREES
EARTHQUAKE OF JANUARY 1, 1975 0355 UTC
BUTTERWORTH FILTER AT 0.50 Hz, ORDER 4
DATA BAND PASSED FROM 0.50 TO 50.00 Hz.
COMPUTING OPTIONS: ZCROSS, NONOISE.
FIGURE
FOURIER AMPLITUDE SPECTRUM OF ACCELERATION.
ANCHORAGE, ALASKA 500 W. THIRD (BASMT)
UP EARTHQUAKE OF JANUARY 1, 1975 0355 UTC
BUTTERWORTH FILTER AT 0.50 HZ, ORDER 4
DATA BAND PASSED FROM 0.50 TO 50.00 HZ.
COMPUTING OPTIONS= ZCROSS, NONOISE.
FIGURE
FOURIER AMPLITUDE SPECTRUM OF ACCELERATION
ANCHORAGE, ALASKA 500 W. THIRD (BSMT)
045 DEGREES
EARTHQUAKE OF JANUARY 1, 1975 0355 UTC
BUTTERWORTH FILTER AT 0.50 HZ, ORDER 4
DATA BAND PASSED FROM 0.50 TO 50.00 HZ.
COMPUTING OPTIONS= ZCROSS, NONoise.
FIGURE
FOURIER AMPLITUDE SPECTRUM OF ACCELERATION.
ANCHORAGE, ALASKA METHODIST UNIVERSITY
315 DEGREES
EARTHQUAKE OF 1 JANUARY, 1975, 0355 UTC
BUTTERWORTH FILTER AT 0.50 Hz, ORDER 4
DATA BAND PASSED FROM 0.50 TO 50.00 Hz.
COMPUTING OPTIONS= ZCROSS, NONOISE.
FIGURE
FOURIER AMPLITUDE SPECTRUM OF ACCELERATION.
ANCHORAGE, ALASKAN METHODIST UNIVERSITY
UP
EARTHQUAKE OF 1 JANUARY, 1975, 0355 UTC
BUTTERWORTH FILTER AT 0.50 HZ, ORDER 4
DATA BAND PASSED FROM 0.50 TO 50.00 HZ.
COMPUTING OPTIONS= ZCROSS, NONOISE.
Figure

Fourier amplitude spectrum of acceleration.
Anchorage, Alaskan Methodist University
225 degrees
Earthquake of 1 January, 1975, 0355 UTC
Butterworth filter at 0.50 Hz, order 4
Data band passed from 0.50 to 50.00 Hz.
Computing options = zcross, nonoise.
Figure

Fourier amplitude spectrum of acceleration, Anchorage, Alaska Third and Gambel (Govt Hosp)
360 degrees
Earthquake of January 1, 1975 0355 UTC
Butterworth filter at 0.50 Hz, order 4
Data band passed from 0.50 to 50.00 Hz.
Computing options = ZCROSS, NONoise.
FIGURE

FOURIER AMPLITUDE SPECTRUM OF ACCELERATION.
ANCHORAGE, ALASKA THIRD AND CAMBEL (GOVT HOSP) UP

EARTHQUAKE OF JANUARY 1, 1975 0355 UTC
BUTTERWORTH FILTER AT 0.50 HZ, ORDER 4
DATA BAND PASSED FROM 0.50 TO 50.00 HZ.
COMPUTING OPTIONS= ZCROSS, NONOISE.
FOURIER AMPLITUDE SPECTRUM OF ACCELERATION.
ANCHORAGE, ALASKA THIRD AND GAMBLE (GOVT HOSP)
EARTHQUAKE OF JANUARY 1, 1975 0355 UTC
BUTTERWORTH FILTER AT 0.50 HZ, ORDER 4
DATA BAND PASSED FROM 0.50 TO 50.00 HZ.
COMPUTING OPTIONS= ZCROSS, NONOISE.
FIGURE

FOURIER AMPLITUDE SPECTRUM OF ACCELERATION.
TALKEETNA, ALASKA FAA-VOR BUILDING
165 DEGREES
EARTHQUAKE OF JANUARY 1, 1975 0355 UTC
BUTTERWORTH FILTER AT 0.50 HZ, ORDER 4
DATA BAND PASSED FROM 0.50 TO 50.00 HZ.
COMPUTING OPTIONS= ZCROSS, NONOISE.
FIGURE
FOURIER AMPLITUDE SPECTRUM OF ACCELERATION.
TALKEETNA, ALASKA FAR-VOR BUILDING UP.
EARTHQUAKE OF JANUARY 1, 1975 0355 UTC
BUTTERWORTH FILTER AT 0.50 HZ, ORDER 4.
DATA BAND PASSED FROM 0.50 TO 50.00 HZ.
COMPUTING OPTIONS= ZCROSS, NONOISE.
FIGURE
FOURIER AMPLITUDE SPECTRUM OF ACCELERATION.
TALKEETNA, ALASKA FRA-VOR BUILDING
075 DEGREES
EARTHQUAKE OF JANUARY 1, 1975 0355 UTC
BUTTERWORTH FILTER AT 0.50 HZ, ORDER 4
DATA BAND PASSED FROM 0.50 TO 50.00 HZ.
COMPUTING OPTIONS= ZCRASS, NONOISE.
FIGURE
LOG-LOG FOURIER AMPLITUDE SPECTRUM OF ACCELERATION.
ANCHORAGE, ALASKA 500 W. THIRD (BSMT)
135 DEGREES
EARTHQUAKE OF JANUARY 1, 1975, 0355 UTC
BUTTERWORTH FILTER AT 0.50 HZ, ORDER 4
DATA BAND PASSED FROM 0.50 TO 50.00 HZ.
COMPUTING OPTIONS= ZCROSS, NONoise.
FIGURE

LOG-LOG FOURIER AMPLITUDE SPECTRUM OF ACCELERATION.
ANCHORAGE, ALASKA 500 W. THIRD (BASMT)
UP
EARTHQUAKE OF JANUARY 1, 1975 0355 UTC
BUTTERWORTH FILTER AT 0.50 HZ, ORDER 4
DATA BAND PASSED FROM 0.50 TO 50.00 HZ.
COMPUTING OPTIONS= ZCROSS, NONOISE.
FIGURE

LOG-LOG FOURIER AMPLITUDE SPECTRUM OF ACCELERATION.
ANCHORAGE, ALASKA 500 W. THIRD (BSMT)
045 DEGREES
EARTHQUAKE OF JANUARY 1, 1975 0355 UTC
BUTTERWORTH FILTER AT 0.50 HZ, ORDER 4
DATA BAND PASSED FROM 0.50 TO 50.00 HZ.
COMPUTING OPTIONS= ZCROSS, NONOISE.
FIGURE
LOG-LOG FOURIER AMPLITUDE SPECTRUM OF ACCELERATION.
ANCHORAGE, ALASKAN METHODIST UNIVERSITY
315 DEGREES
EARTHQUAKE OF 1 JANUARY, 1975, 0355 UTC
BUTTERWORTH FILTER AT 0.50 Hz, ORDER 4
DATA BAND PASSED FROM 0.50 TO 50.00 Hz.
COMPUTING OPTIONS = ZEROS, NONOISE.
FIGURE
LOG-LOG FOURIER AMPLITUDE SPECTRUM OF ACCELERATION,
ANCHORAGE, ALASKAN METHODIST UNIVERSITY
UP EARTHQUAKE OF 1 JANUARY, 1975, 0355 UTC
BUTTERWORTH FILTER AT 0.50 HZ, ORDER 4
DATA BAND PASSED FROM 0.50 TO 50.00 HZ.
COMPUTING OPTIONS= ZCROSS, NONOISE.
FIGURE
LOG-LOG FOURIER AMPLITUDE SPECTRUM OF ACCELERATION.
ANCHORAGE, ALASKAN METHODIST UNIVERSITY
225 DEGREES
EARTHQUAKE OF 1 JANUARY, 1975, 0355 UTC
BUTTERWORTH FILTER AT 0.50 Hz, ORDER 4
DATA BAND PASSED FROM 0.50 TO 50.00 Hz.
COMPUTING OPTIONS= ZCROSS, NODISE.
FIGURE

LOG-LOG FOURIER AMPLITUDE SPECTRUM OF ACCELERATION.
ANCHORAGE, ALASKA THIRD AND GAMBEL (GOVT HOSP)
360 DEGREES
EARTHQUAKE OF JANUARY 1, 1975 0355 UTC
BUTERWORTH FILTER AT 0.50 HZ, ORDER 4
DATA BAND PASSED FROM 0.50 TO 50.00 HZ.
COMPUTING OPTIONS = ZCROSS, NONOISE.
FIGURE

LOG-LOG FOURIER AMPLITUDE SPECTRUM OF ACCELERATION.
ANCHORAGE, ALASKA THIRD AND GAMBEL (GOVT HOSP)
UP
EARTHQUAKE OF JANUARY 15, 1975 0355 UTC
BUTTERWORTH FILTER AT 0.50 HZ, ORDER 4
DATA BAND PASSED FROM 0.50 TO 50.00 HZ,
COMPUTING OPTIONS= ZCROSS, NONoise.
FIGURE

LOG-LOG FOURIER AMPLITUDE SPECTRUM OF ACCELERATION.
ANCHORAGE, ALASKA THIRD AND GAMBEL (GOVT HOSP)
270 DEGREES
EARTHQUAKE OF JANUARY 1, 1975 0355 UTC
BUTTERWORTH FILTER AT 0.50 HZ, ORDER 4
DATA BAND PASSED FROM 0.50 TO 50.00 HZ.
COMPUTING OPTIONS= ZCROSS, NONOISE.
Figure

Log-log Fourier amplitude spectrum of acceleration.
Talkeetna, Alaska FAA-VOR building
165 degrees
Earthquake of January 1, 1975 0355 UTC
Butterworth filter at 0.50 Hz, order 4
Data band passed from 0.50 to 50.00 Hz.
Computing options = ZCROSS, NOISE.
LOG OF FOURIER AMPLITUDE, ZCRASS, NONOISE.
DATA BAND PASS FILTERED FROM 0.50 TO 50.00 HZ.
BUTTERWORTH FILTER AT 0.50 HZ. ANOBER 4.
EARTHQUAKE OF JANUARY 1, 1975, OSS USC.

ALASKA, AK.-YORK BUILDING.

FIGURE
LOG OF FOURIER AMPLITUDE, ZCRAAM, NONOISE.

LOG OF FREQUENCY, HZ
Figure

LOG-LOG FOURIER AMPLITUDE SPECTRUM OF ACCELERATION.

LOG OF FREQUENCY, Hz

LOG OF FOURIER AMPLITUDE, CM/SEC
Appendix II

Current List of Processed Records
APPENDIX II
CURRENT LIST OF PROCESSED RECORDS

USGS processing of records from the USGS permanent network of strong-motion accelerographs and associated networks.

Strong motion data from earthquakes 1978* and later.

TABLE 1. Chronological list of events and associated reports describing the existence/processing/analysis/availability of digital data on tape, or at the National Strong Motion Data Center in Menlo Park.

<table>
<thead>
<tr>
<th>Date & Time</th>
<th>Earthquake</th>
<th>Reference (see attached list)</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 1, 1975; 0355 GMT</td>
<td>Southern Alaska;</td>
<td>OFR 86-191 (Silverstein, Brady, Mork, 1986a)</td>
</tr>
<tr>
<td>March 25, 1978;</td>
<td>Coyote Dam, California</td>
<td>OFR 83-166 (Brady & Perez, 1983)</td>
</tr>
<tr>
<td>August 27, 1978 and two later shocks;</td>
<td>Monticello Dam, Jenkinsville, South Carolina;</td>
<td>OFR 81-0448 (Brady & others, 1981)</td>
</tr>
<tr>
<td>August 6, 1979;</td>
<td>Coyote Lake, California</td>
<td>OFR 81-42 (Brady & others, 1980)</td>
</tr>
<tr>
<td>October 15, 1979;</td>
<td>Imperial Valley, California</td>
<td>OFR 80-703 (Brady, Perez & Mork, 1980)</td>
</tr>
<tr>
<td>October 15, 1979;</td>
<td>Imperial Valley, California</td>
<td>OFR 82-183 (Perez, 1982)</td>
</tr>
<tr>
<td>October 15, 1979;</td>
<td>Imperial Valley California aftershock; 2317:41, 2318:20, 2318:40</td>
<td>OFR 86- (Brady, Mork, Silverstein)</td>
</tr>
<tr>
<td>October 16, 1979, 0706 GMT; Monticello Dam, Jenkinsville, South Carolina;</td>
<td>OFR 81-1241 (Mork & Brady, 1981)</td>
<td></td>
</tr>
<tr>
<td>December 13, 1981 and March 18, 1983; Solomon Islands;</td>
<td>OFR 86- (Silverstein, Brady, Mork, 1986a)</td>
<td></td>
</tr>
<tr>
<td>February 13, 14, and 23, 1983; Monasavu Dam, Fiji;</td>
<td>OFR 85-375 (Silverstein, 1985a)</td>
<td></td>
</tr>
<tr>
<td>May 2 and May 9, 1983; Coalinga, California;</td>
<td>OFR 84-626 (Maley & others, 1984)</td>
<td></td>
</tr>
<tr>
<td>July 9, 1983; 0740 GMT; Coalinga, California;</td>
<td>OFR 85-584 (Silverstein, 1985b)</td>
<td></td>
</tr>
<tr>
<td>July 22, 1983; 0239 GMT; Coalinga, California;</td>
<td>OFR 85-250 (Silverstein and Brady, 1985)</td>
<td></td>
</tr>
</tbody>
</table>

*With inclusion of isolated earlier events recently processed.
TABLE 1. Chronological list of events and associated reports (continued)

<table>
<thead>
<tr>
<th>Date & Time</th>
<th>Earthquake</th>
<th>Reference (see attached list)</th>
</tr>
</thead>
<tbody>
<tr>
<td>April 24, 1984;</td>
<td>Morgan Hill, California;</td>
<td>OFR 84-498, Vol I and II (Compiled by Seena Hoose)</td>
</tr>
<tr>
<td>December 23, 1985;</td>
<td>0516 GMT Northwest Territories, and Nov. 9, Dec. 23, Dec 25 Canada</td>
<td>OFR 86- ---, (Weichert and others, 1986)</td>
</tr>
<tr>
<td>January 26, 1986;</td>
<td>1920 GMT Hollister, California</td>
<td>OFR 86- ---, (Brady and others, 1986)</td>
</tr>
</tbody>
</table>
TABLE 2. Processed records in each report.

January 1, 1975; 0355 GMT; southern Alaska; OFR 86-191
Records (4): Anchorage, 500 W. Third St., Basement
 Anchorage, Alaskan Methodist University
 Anchorage, Government Hospital
 Talkeetna, FAA-VOR Building

March 25, 1978; Coyote Dam, California; OFR 83-166.
Records (3): Coyote Dam, Ukiah, California: abutment, toe, crest.

August 25, 1978, 1023 GMT and 2 later shocks; Monticello Dam, South Carolina, OFR 81-0448.
Records (3): Jenkinsville, S.C. Monticello Dam
 Shared abutment (center crest)
 August 27, 1978, 1023 GMT
 Two later unidentified events

August 6, 1979, Coyote Lake, California; OFR 81-42
Records (6): Coyote Creek, San Martin, California
 Gilroy Array: Station 6, San Ysidro, California
 Gilroy Array: Station 4, San Ysidro School, California
 Gilroy Array: Station 3, Sewage Treatment Plant, California
 Gilroy Array: Station 2, Mission Trails Motel, California
 Gilroy Array: Station 1, Gavilan College, California

October 15, 1979, 2317 GMT; The Imperial Valley Earthquake; OFR 80-703.
Records (22): El Centro Array 7, Imperial Valley College, California
 El Centro Array 6, Huston Road
 El Centro, Bonds Corner, Hlways 98 & 115
 El Centro Array 8, Cruickshank Road
 El Centro Array 5, James Road
 El Centro Differential Array
 El Centro Array 4, Anderson Road
 Brawley, Brawley Municipal Airport
 Holtville, California, Holtville Post Office
 El Centro Array 10, Keystone Road
 Calexico, California, Calexico Fire Station
 El Centro Array 11, McCabe School
 El Centro Array 3, Pine Union School
 Parachute Test Facility
 El Centro Array 2, Keystone Road
 El Centro Array 12, Brockman Road
 Calipatria, California, Calipatria Fire Station
 El Centro Array 13, Strobel Residence
 El Centro Array 1, Borchard Ranch
 Superstition Mountain, California
 Plaster City, California, Storehouse
 Coachella Canal Number 4, California
TABLE 2. Processed records in each report. (continued)

October 15, 1979, 2317:41 GMT; Imperial Valley Aftershocks; OFR 86-___
Records (6)
- El Centro Array 5, James Road
- El Centro Array 6, Huston Road
- El Centro Array 7, Imperial Valley College
- El Centro Array 8, Cruickshank Road
- El Centro Array 9, Commercial Ave.
- El Centro Differential Array

October 15, 1979, 2318:20 GMT; Imperial Valley Aftershocks; OFR 86-___
Records (6)
- El Centro Array 5, James Road
- El Centro Array 6, Huston Road
- El Centro Array 7, Imperial Valley College
- El Centro Array 8, Cruickshank Road
- El Centro Array 9, Commercial Ave.
- El Centro Differential Array

October 15, 1979, 2318:40; Imperial Valley Aftershocks; OFR 86-___
Records (7)
- El Centro Array 5, James Road
- El Centro Array 6, Huston Road
- El Centro Array 7, Imperial Valley College
- El Centro Array 8, Cruickshank Road
- El Centro Array 9, Commercial Ave.
- El Centro Differential Array
- Bonds Corner, Highways 115 & 98
Holtville Post Office

October 15, 1979; The Imperial Valley, California; OFR 82-183;
Records (22): This report contains the time-dependent response spectrum plots for the same records as in OFR 80-703, above.

October 16, 1979, 0706 GMT, Monticello Dam, South Carolina, OFR 81-1214.
Records (1): Jenkinsville, South Carolina, Monticello Dam settlement (center crest)

December 13, 1981 and March 18, 1983; Solomon Islands, OFR 86-___
Dec. 13, 1981, 1324 GMT:
March 18, 1983: Arawa Town
Bato Bridge
BVE80, Panguna Mine.

February 13, 14, and 23, 1983; Monasavu Dam, Fiji; OFR 85-375
<table>
<thead>
<tr>
<th>Date</th>
<th>Location</th>
<th>Reports</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 2 and May 9, 1983; Coalinga, California; OFR 84-625.</td>
<td></td>
<td>May 2, 1983, 2342 UTC: Pleasant Valley Pump Plant: switchyard, basement</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>May 9, 1983, 0249 UTC: Anticline Ridge: freefield and pad</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Burnett Construction</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Oil City</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Oil Fields Fire Station</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Palmer Avenue</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Skunk Hollow</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pleasant Valley Pump Plant: switchyard, basement, 1st floor, roof</td>
</tr>
<tr>
<td>July 9, 1983; 0740 GMT; Coalinga, California; OFR 85-584</td>
<td></td>
<td>Anticline Ridge: freefield and pad</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Burnett Construction</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Oil City</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Oil Fields Fire Station</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Palmer Avenue</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Skunk Hollow</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Transmitter Hill</td>
</tr>
<tr>
<td>July 22, 1983; 0239 GMT; Coalinga, California; OFR 85-250</td>
<td></td>
<td>Anticline Ridge: pad site</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Oil City</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Oil Fields Fire Station</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Palmer Avenue</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pleasant Valley Pump Plant: 1st floor, basement, roof, switchyard, freefield</td>
</tr>
<tr>
<td>April 24, 1984; Morgan Hill, California; OFR 84-4988, Vol. II.</td>
<td></td>
<td>Anderson Dam: downstream, crest</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hollister City Hall Annex</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hollister Differential Array</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>San Justo Damsite: right abutment, left abutment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>San Jose 101/280/680 bridge</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hollister Differential Array No. 1, 3, 4, 5</td>
</tr>
<tr>
<td>December 23, 1985; with foreshock and aftershocks; Northwest Territories, Canada; OFR 86-</td>
<td></td>
<td>Nov. 9, 1985; 0446 GMT: Nahanni Site 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dec. 23, 1985; 0516 GMT: Nahanni Sites 1, 2, 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dec. 23, 1985; 0548 GMT: Nahanni Site 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dec. 25, 1985; 1543 GMT: Nahanni Site 3</td>
</tr>
<tr>
<td>January 26, 1986; Hollister, California; OFR 86-</td>
<td></td>
<td>Hollister Digital Differential Array, Stations 1, 3, 4, 5, 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(in press)</td>
</tr>
</tbody>
</table>

97
References

Brady, A. G., Mork, P. N., Silverstein, B. L., 1986; Processed strong-motion records from the 2317:41, 2318:20 and 2318:40 aftershocks of the October 15, 1979, 2613:53 GMT earthquake; Imperial Valley, California. USGS Open File Report 86-___.

Perez, Virgilio, 1982. The Imperial Valley, California earthquake, October 15, 1979; time dependent response spectrum plots. USGS Open File Report 82-183.

