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INTRODUCTION

Eocene volcani¢ rocks with arc characteristics were dredged from the continental margin
in the Bering Sea on two U.S. Geological Survey cruises (L5-78-BS and L$-82-BS) in 1878 and
1982. Samples ranging from basalt to rhyolite in composition were recovered from seven sites,
and from water depths ranging from 750 to 2200 m. Dredge locations and water depths are
listed in Table 1, and dredge locations are shown in Figure 1. Most of the samples appear to
be broken-off outerop, but the rhyolite samples represent isolated, rounded cobbles in a
dredge haul composed mostly of sedimentary rock and may be glacial erratics.

This report presents K-Ar ages and petrological and geochemical data for the Eocene
volcanic arc rock samples. Stropgly alkalic basalt samples of Quaternary age were slso
recovered in some of the dredges in this area and are described in a separate report (Davis
and others, 1987).

METHODS

Samples were studied in thin sections and submitted for bulk chemical analyses to the
analytical laboratories of the U.S. Geological Survey. Major element chemistry was deter-
mined by wave-length dispersive X-ray fluorescence (XRF) using methods described by Tag-
gart and others (1982). Abundances of Rb, Sr, Zr, Bs, Y, and Nb were determined by energy-
dispersive XRF. Precision and accuracy of XRF is 1 to 2% for major elements and 5 to 10%
for trace elements. FeO, CO,, and H,O were determined by standard wet chemical techniques
(Peck, 1964). Abundances of Hf, Ta, Th, Sc, Co, Cr and the rare earth elements (REE) were
determined by instrumental neutron activation analysis (INAA) using methods described by
Baedecker (1979). Plagioclase, clinopyroxene, arthopyroxene, amphibole and Fe-Ti axide
compositions were determined with a 9-channel electron microprobe, using 15 kv accelerating
voltage and 20 nAmp sample current with 8 narrowly focused beam (~2 u) for ¢linopyroxene,
orthopyroxene, amphibole and Fe-Ti oxide, and 15 nAmp and a larger beam size (~10 u) for
plagioclase. Minerals and synthetic oxides were used ss standards. Data reduction was per-
formed using a modified version of the Bence and Albee (1968) program.

For conventional whole-rock K-Ar measurements, rock was crushed and sieved to retain
the 0.5 to 1.0 mm size fraction. Plagioclase and amphibole were separated magnetically and
with beavy liquids. Plagioclase separates and crushed whole-rock samples were acid-leached
with HF and HNOa to remove clay alteration products. One aliquant was used for the Ar
analysis and another was pulverized to a fine powder for duplicate K,O analyses. K,0 ans-

lyses were performed by flame photometry and Ar mass analyses were done with 2 multiple
collector mass spectrometer. Conventional K-Ar dating techniques used were those described
in detsil by Dalrymple and Lanphere (1989).

For ®Ar/%*Ar dating the samples were sealed in sir in quartg vials and irradiated in the
core of the U.S. Geological Survey TRIGA reactor for 10 to 30 hours where they received a
neutron dose of about 1x10'® to 3x10'® nvt. Details of “Ar/*Ar techniques are described by
Dalry mple and Lanphere (1871) and Dalrymple and others (1981).

PETROGRAPHY AND MINERALOGY

Petrography of the samples is summarized in Table 2 and plagioclase, clinopyroxene,
orthopyroxene, amphibole, and Fe-Ti oxide analyses of selected samples are listed in Tables 3§,
4,5, 8 and 7, respectively. The dredged samples comprise basalt, basaltic andesite, andesite,
dacite and rhyolite, using the classification scheme of Gill (1881). One of the basaltic samples



(40-8) has the textural features of an intrusive rock with phenocrysts set in a
hypidiomorphic-granular groundmass. This sample could be from a gabbroic dike or sill as
well as from the interior of a thick flow. However, since textural features reflect mostly mode
of emplacement and cooling history this sample is listed as basalt under chemical
classification in the tables. One sample (46-7) contains small plagiotlase-rich xenoliths, and
soother (45-4) appears cataclastically sheared with iron oxides filling all fractures. All the
samples are at least somewhat altered. Two of the basalt samples (10-2, 10-3) are severely
altered, containing metamorphic minerals typical of lower greenschist facies.

Except {or the two aphyric meta-basalt samples, all samples are porphyritic. The two
rhyolite samples are only sparsely porphyritic with small microphenoerysts of biotite and rare
quartz. The biotite i3 partly replaced by chlorite. Plagioclase is the dominsnt phenocryst
phase in the basalt 1o dacite snuite and may constitute up to 38% of the rock in the more sili-
cic samples. Plagioclase crystals are typically large (to 6 mm) and may be pearly euhedral
with slightly rounded cormers or they may be anhedral fragments. They typically exhibit
strong optical zoning and often contain a "dusty” zone with many tiny inclusions.

Plagioclase compositions in the basalt to dacite suite range from bytownite (An,,) to oli-
goclase (An,), and & compositional range of 30 wol.% in An content is not uncommon in 2
single thin section (Table 3). The range in Or cootent in a given sample is considerable, espe-
cially in the andesites and dacite (Figure 2). Or increases with decreasing An content in a
given sample, and in a general way An correlstes with calcium content of the whole rock
composition, shiftiog the range of compositions toward progressively lower An content from
basalt to andesite (Figure 2). However, plagioclase compositions in the dacite sample overlap
those of the andesites and contain some core ¢compositions as calcic as those in the basalt.

Clinopyroxene occurs in all basalt and andesite samples but is shgent in the dacite and
rhyolite. Typically, clinopyroxene occurs 8s anhedral plates or granules, or as very ragged
crystal fragments, or more rarely as overgrowth on orthopyroxene. In the andesite samples
microphenocrysts of clinopyroxene are rare and very small in size (< 1 mm); in the basalt
they are more abundant and larger (to 4 mm). Compositions show a narrow range with a lim-
ited iron enrichment trend (Wo,, ,, En,, ., Fs_ ., Table 4, Figure 3). Compositional zoning is
minor and commonly normal in basalt with cores more magnesian thao rims, whereas zoning
in andesite is somewhat larger and may be normal or reverse. TiO, is very low, commonly
sbout 0.5%, but ranges (rom 0.23 to 1.26%. Cr,O, is also typically low, but ravges from 0.05
to 0.87%. '

Andesite and dacite samples generally contain some primary orthopyroxene and amphi-
bole. The orthopyroxene (bypersthene) is typically euhedral, colorless to very faintly pinkish-
brown pleochroic, with a narrow range in calcium content (Wo, , En, o, Fs,, .., Table 5, Fig-
ure 3). Crystals are either unzoned or have slightly more magnesian cores. Amphibole pheno-
crysts are either euhedral or broken crystals with some euhedral faces. They are most com-
monly pleochroic in yellowish or greenish-brown to a deeper brown of the same shade, but
some show pale-brown to red-brown pleochroism. Except for one sample (41-6) in which
amphibole has largely been replaced by opaque minerals, most amphibole crystals are unal-
tered, having only thin opaque reaction rims and mioor inclusions of iron oxides. Based on the
classification of Leake (1978) the amphibole compositions include rare pargasite but range
predominantly from edenite or edenitic hornblende to magnesic-hornblende (assuming all iron
as FeO). TiO, in the amphiboles is typically less than 2% but ranges from 1.24 io 4.0%. Cr

and K,O contents are very low, ranging from 0.0 to 0.09%, and from 0.32 to 1.0%, respec-
tively (Table 8).
Opaque minerals are very abundant io all samples, occurring most commonly as minute

specks in the groundmass but also as equant microphenocryst to 1 mm in size. Micropheno-
crysts, either in the groundmass or included in phenocryst phases, are most commonly
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titanomagnetite, but ilmenite is also present (Table 7). The Fe-Ti oxide phases are low in
Cr,0, (0.0 to 0.53%), ALO, (0.05 to 3.6%) and Mg (0.87 to 3.0%), but relatively high in
V,0, (0.8 to 1.15%). An ulvospinel compooent as high as 83% in a titanomagnetite of the
dacite sample (40-16) sppears too high and may have resulted from the beam overlapping
magnetite-ilmenite exsolution lamellae. Other oxide phases in this sample yielded poor ana-
lyses with low totals, possibly for the same reason.

Olivine apparently was present in minor amounts in the basalt and some basaltic
andesite samples but is completely replaced by iron oxides and clay minerals. A few ¢rystal
outlines are clearly indicative of clivine, but some sub- to anhedral pseudomorphs may have
been & different minersl phase (pyroxene or amphibole). Other primary minerals jnclude
biotite, muscovite and quartz in the rhyolite samples and traces of euhedral apatite in one of
the andesite samples. Secondary minerals include chlorite, zeolite, clay minerals, epidote and
caleite. Some fractures are filled with sulfide minerals and iron hydroxides.

K-AR AGES

Conventional K-Ar ages were determined for ten plagioclase separates and for two
whole-rock samples. Two of the samples, for which conventional K-Ar ages of plagioclase had

been determined, were selected for *"Ar/%Ar total fusion and incremental heating experi-
ments. The data are presented in Table 8. Preliminary ages for some of these samples have
been reported by Marlow and Cooper (1985).

The conventional ages obtained for the plagioclase separates (Table 8a) range from 50.2
+1.5 to b4.4 +£1.2 Ma. A whole rock age of 49.0 1.2 Ma obtained for sample 45-7 is some-~
what younger, probably due to alteration, and may be considered 2 minimum age. A whole
rock sge of 77 +1.5 Ma obtained for another sample from the same dredge (45-4) is consider
ably older than the other samples. This sample apparently is not part of the Eocene arc suite
and may be a glacial erratic. Volcanic arc rocks with ages between 68 and 77 Ma have been
reported {rom St. Matthews lsland (Patton and others, 1976).

A ©Ar/*Ar total fusion age of 56.7 +3.0 Ma (Table 8b) obtained for the amphibole of
sample 40-5 is older than the range of conventional ages obtained for the plagioclase
separates. However, it is within 2 standard deviations of the error range for all of the pla~
gioclase snalyses, and within 1 standard deviation of the age obtained from the plagioclase of
the same sample.

A Ar/®Ar incremental heating age of 53.0 £0.5 Ma is concordant with the conven-
tional K-Ar age of 53.3 1.3 Ma obtained from the same plagioclase separate. The analytical
data for the **Ar/%Ar incremental heating experiment (Table 8b) were interpreted in accor-
daoce with the following criteria suggested by Lanphere and Dalrymple (1978):

1) A well-defined, high-temperature age spectrum plateau formed by three or more con-
tiguous gas increments representing at least 50% of the ®Ar released. 2) A well-defined iso-
chron for the plateau points; i.e., a York 2 fit index (SUMS/[N-2]) of less than 2.5. 3) Concor-
dant isochron and platesu ages. 4) An “Ar/3Ar intercept on the isochron diagram not
significantly different from the atmospheric value of 205.5 at the 95% level of confidence.

Parameters addressed by these criteria are displayed for various possible combinations
of increments in Table 8c. All of these combinations are acceptable with respect to the sug-
gested criteria. We have selected the 710 - 1350 degree set of increments, because it contains
the largest number of steps. The age spectrum and isochron plots are displayed in Figure 4.
The weighted mean plateau age of 53.0 +0.5 Ma is concordant with the isochron age of 52.1
+1.0, snd both of these are concordant with the conventional age of 53.3 +£1.3 Ma obtained
from the same material. This agreement suggests that these samples are undisturbed, and
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that their ages represent the original crystallization ages. The narrow range in ages deter-
mined for these samples clearly constrain the time of eruption to the early Eocene.

MAJOR ELEMENT CHREMISTRY

Seventeen samples were analyzed for major and minor elements (Table 9). these sam-

ples are classified on basis of dry-reduced SiO, contents:

<53 % 510, = basalt

53 - 57 % SiO, = basaltic andesite

57 - 83 % S5i0, = andesite

83 - 70 % SiO, = dacite

> 70% SiO, = rhyolite
All samples are at least somewhat altered, with volatile contents ranging from <1.0 to 5.7%.
When plotted on a FeO*/MgO diagram (Figure 5), according to the method of Miyashiro
(1974), the samples include tholeiitic and calc-alkalic compositions. All samples with SiO,
greater than 57% show a distinct calc-alkalic trend. Following the method of Gill (1981),
most samples are classified as "medium-K” basalt to dacite, but two samples (15-3, 45-4) are
*high-K” basaltic andesite (Figure 8). The two meta-basalt samples and the two rhyolite sam-
ples are lower in potassium and are borderline between low-K and medium-K compositions
(Table 9, Figure 7). These four samples, in addition to being low in potassium are enriched in
sodium, which, mn the case of the peta-basalt is most likely the result of spilitization. Low
potassium may be a primary feature of the rhyolites reflecting bictite fractionation or may
have resulted from secondary alteration. The rhyolite compositions fall along the calc-alkalic
trend defined by the basaltic andesite to dacite suite (Figures 5,6,7). TiO,, CaO, snd ALO,
generally decrease with increasing SiO,, whereas Na, O increases (Figure 7), but all oxides
show considerable scatter, especially in the basaltic range. Relatively high ALO, and low
TiO, abuodances are commonly observed in island are compositions. The calc-alkalic compo-
sitions have typical island are characteristics, but some of the tholeiitic samples (10-2,10-3,
45-4, 47-8) bave higher TiO, and lower Al,O, contents, resembling ocean foor basalt,
although TiO, content is still well within the renge observed for arc compositiona.

TRACE ELEMENT CHEMISTRY

Abundances of twenty trace elements for the seventeen samples are presented in Table
10. Except for the spilitized basalt samples, Rb, Sr, and Ba abundances sre high and
extremely variable, ranging from 13 to 50, 325 to 843, and 230 to 1360 ppm, respectively. The
spilitized basslt samples have very low Rb (2 ppm) and low Sr (120, 132 ppm) abundances
similar to ocean ridge basalt. Ba abundances (80 and 104) are also much lower than in any of
the other samples, but somewhat higher than typical ocean ridge basalt. However, these ele-
ments are easily mobilized by secondary alteration processes. High-field-strength elements like
Zr, Nb, Hf, and Ta that are more resistant to alteration (e.g. Winchester and Floyd, 1876;
Wood and others, 1976) are generally lower than in equivalently differentiated ocean ridge
basalt. Depletion in Nb and Ts is characteristic of island arc lavas. On a Th-Hf-Ta plot (Fig-
ure 8) all samples except the spilitized basalt (10-2, 10-8) plot in the field for convergent plate
IArgins.

Rare earth elements (REE) also show a considerable range in compositions with La/Yb
ratios ranging from 2.0 to 14.0 in the basalt to dacite suite, and as high as 17 to 20 in the
rhyolites. The chondrite-normalized REE compositions fall into two distinct groups: One



relatively flat for the basalt samples (Fig. 9a), the other, consisting of more silicic samples
(>53% §i0,), has steeper slopes with enriched light REE (LREE) and lower heavy REE
?-E!.EE) abundances (Figure 9b). The generally flat patterns of the spilitized basalt samples
Figure 9c) show several erratic spikes in the lighter REE region, indicative of secondary
slteration. The rhyolite samples have very steep profiles with extremely low HREE abun-
dances (Figure 8d).

The presence of relatively flat patterns for tholeiitic basalt and one with steeper slopes
for the cale-alkalic suite has been observed in other island arc samples (e.g. Basaltic Volcan-
ism Project, 1981; Koy and others, 1982; Whitford and others, 1879). None of the basalt sam-
ples show the severe light REE depletion of the "classical” island arc tholeiite of Jakes and
Gill (1970) and Jakes and White (1872). However, the pronounced enrichment of Ba over light
REE is a distinctive feature of all island-arc Javss. A plot of chondrite-normalized (Ba/Ls),
vs. (La/Sm), shows all of the samples, except 10-2, well above the field for oceanic basalt
(Figure 10). Sample 40-8, which may be a gabbroic dike rock, has such a high (Ba/La) ratio
(~27) that it falls outside Figure 10. The abnormally high Ba contents of this sample may
bave resulted from contamination by wallrock.

COMPARISON WITH OTHER ISLAND ARC COMPOSITIONS

Except for the meta-basalt, the samples dredged from the Beringian margin clearly have
voleanic arc affinities. The two meta-basalt samples may represent ocean ficor on which the
voleanic arc was built; however an origin as arc tholeiite cannot entirely be ruled out. Low Ti,
Nb, Ts snd high Ba sbundances relative t0 LREE are similar to compositions from volcanic
arcs in general (e.g. Basaltic Volcanism Project, 1981; Gill, 1981). Likewise, abundance of
strongly zoned plagiocisse, presence of two pyroxenes and primary amphibole are mineralogi-
cal features shared with many volcanic ar¢ andesites. Chemically, all three volcanic suites
commonly occurring in close association in many volcanic arcs, that is tholeiitic, cale-slkalic
and shoshonitic, appear to be represented.

The dredged samples show = strong similarity to modern Aleutian arc compositions.
Two broad magmatic trends, tholeiitic and cale-alkalic, are recognized for Aleutian volcanoes
(Kay and others, 1982). Tholeiitic and calc-slkalic differentiation trends sre distinguished on
basis of FeO*/MgO vs. SiO, (Figure 5) in which the tholeiitic trend shows iron enrichment
with increased differentistion, whereas the calc-alkalic trend shows very little change in
FeO"/MgO over a large range in SiO,. With more silicic compositions (>54% SiO,) the dis-
tinction between these two trends becomes very apparent (Figure 5); however in the range of
basaltic compositions these fields overlap. Individual volcanic centers may erupt lavsa with
characteristics of both trends. Furthermore, early Tertiary lava from the Aleutians shows the
same compositional diversity (Rubenstone, 1984), indicating that this magmatic diversity has
persisted since inception of the arc. The dredged andesite and dacite correspond to the calc-
alkalic trend of Aleutian volcanoes. Major element trends of dredged samples are similar to
those from the Aleutians (Figure 6,7), however, the high-K basaltic andesite sample (15-3) lies
outside the field for modern Aleutian are compositions, but resembles the shoshonitic trend
observed in subduction-related volcanic suites in Alaska (Moll-Stalcup, 1987) and in many
other volcanic ares (Gill, 1881). No shoshonitic lavas have erupted along the major voleanie
axis in the Aleutians (Kay and others, 1882), but the island of Bogoslof, located & short dis-
tance behind the sre, has erupted high-K basalts and andesites (Arculus and others, 1976).
Compositons of three lava flows from Bogoslof Island are shown for comparison on Figures
5,8, and 7, and show similar K,O content as the high-K sample dredged from the Beringian
margio. However, TiO, content of Bogoslof samples sppears somewhat lower at 2 comparable
SiO, range.



REE abundances of Aleutian lavas show similar chondrite-normalized patterns as the
dredged samples, namely profiles that are relatively flat in the basaltic range, especially for
tholeiitic samples, and profiles that become steeper, showing LREE over HREE enrichment in
the calc-slkalic andesite to dacite range. However, the calc-alkalic andesite and dacite compo-
sitions of the dredged samples bave steeper slopes and lower heavy REE abundances than
Aleutian lavas of comparable SiO, content, suggesting that garnet and amphibole may have
played s larger role in the petrogenesis of these samples. The dredged samples show no
significant Eu anomaly, whereas some Aleutian samples with >59% SiO, show distinctive
negative or positive Eu anomalies (Kay and others, 1982). Mineral compositons of pls-
gioclase, clino- and orthopyroxene and amphibole in dredged samples overlap with those
reported for Aleutian lavas, except that some amphibole ¢rystals in the dredged samples show
some higher values in TiO, and lower AJ,O, (Kay and Kay, 1985; Rubenstone, 1984).

Voleanic rocks with features characteristic of subduction-related arc rocks, similar to the
sarnples dredged from the Beringian margin, are abundant throughout Alaska. A broad belt of
arc-type magmatism, consisting predominantly of medium-K and bigh-K basalt ¢to rhyolite,
spans a distance of more than 5560 km in western Alaska {(Mol}-Stalcup, 1987). Conventional
whole-rock K-Ar ages determined for samples within this belt range from 75 to 56 Ma (Moll-
Stalcup, 1987). Unlike the modern Aleutian arc lavas, shoshobitic compositions are abundant
in the northern part of this belt and may reflect a continentsl influence, as does the presence
of rhyolite, which appears to be rare in intra-oceanic arcs. Comprehensive data sets, including
well-constrained K-Ar data, major, trace and mineral chemistry for these Alaskan rocks are
exceedingly rare, and hence a detailed comparison between these rocks and the dredged rocks
is not possible.

CONCLUSIONS

Samples dredged from several locations along the Beringisae margin are clearly of vol-
canic arc origin, implying a convergent history for this region during the early Tertiary. Com-
positionally the dredged samples show no significant differences from those presently erupted
in the Aleutian arc. They also resemble many of the rocks from western Alaska that have
arc-compositions, although chemical diversity and a much greater range in ages are observed
for the Alaskan rocks. Well constrained K-Ar ages limits the age of the dredged samples
between 55 and 50 Ma, which is copsiderable younger than arc type volcanism omn St.
Matthews Island (65 to 77 Ms; Patton and others, 1976). Hence, these samples do not appear
to be part of that belt, but instead appear to be part of a younger belt of arc-type magma-
tism fartber south. The oldest lavas erupted from the Aleutian arc sppear to approach 50 Ma
in age (Rubenstone, 1984), suggesting that the site of convergence shifted to its present posi-
tion at about 50 Ma.

Recent volcanism along the Beringian margin ranges {rom about 2 m.yrs. to < 100,000
yrs. (Cox and others, 1986; Lee-Wong and others, 1979; Davis and others, 1987), and shows
no sitoilarity with island arc volcanism, but rather consists of strongly alkalic (not shoshoni-
tic) basalt similar to that erupted during the rejuvenated stage of volcanism on oceanic
islands or in continental settings. In either setting, this type of volcanism appears to be
related to tectonic activity involving normal faulting and uplift or subsidence (Davis et al.,
1987).

Eocene arc volcanic rocks from the Beringian margin may be ecither part of an allo-
chthonous terrane accreted to the continental margin, or they may be an autochthonous vol-
canic arc, which was the site of convergence during the early Eocene. There appears to be no
evidence for large transform faults in this region. Subduction-related rocks occurring along the
continental margin extend over a total distance of more than 800 km, if the Focene arc-
related jntrusives on St. George Island are included (Barth, 1958; Vallier unpulished data). In



addition seismic data suggests a thick sediment wedge (8-10 km) appears to be buried beneath
the continental margin (Marlow and Cooper, 1985) which may be a trench deposit. There-
fore, we prefer to interpret the dats as representing the youngest arc in a series of belts of
arc-type magmatism in this region. Plate motion studies of the North Pacific (Scholl and oth-
ers, 1986) and age dats from the Aleutian arc (Rubenstone, 1984) suggest that the site of con-
vergence shifted to the Aleutian are in the 55 to 50 Ma interval. Thus these rocks appear to
represent the last pulse in are-type magmatism during the last stages of convergence before
relocating subduction to its present position at the Aleutian are.
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Table 1: Dredge Locations

Cruise 1.D. Dredge No. Location Water depth
(Lat.*N) (Long.'W) (m)
L5-78-BS 10 68 © 20.2’ 174" 51.7° 1450-1800
L5-78-BS 15 88 27.5° 176 * 61.8' 950-1100
L5-78-BS 22 69 “ 36.9" 178 * 49.2° 1500-2200
L9-82-BS 40 58" 86.1° 177 °20.9° 800-19050
Le-82-BS 41 58 86.8° 177 20.7" 7850
L9-82-BS 45 §8° 31.7° 178° 114 840-1400
L9-82-BS 47 58°31.6° 178 ° 04.9° 900-1400




Table 2: Summary of Petrographic Data

Sample Rock Texture Phenocrysta Groundmsss Remarks
No. Type volL%* Minerals vol%" Mineraly
10-3 Mots-basalt  Intergranular [} aphyric 100 piag > chlor > epl > opg metamorphosed to
fow-K %) greenschist faclas
tholalitic {ntersertal
10-3 Mats-basalt Interyranulsr (] sphyric 100 plag > epl > chlor > opq metamarphosed to
low-K Lo to greanechist Maclos
tholelitic intersertal
15-8 B.Andesite pilotaxitic 1T plag 79 plag > opq > cpx > olivine pseudomorphed
High-K 4 cpx clay + Fe bydroxides hy sapouite
tholsiitic Tr oliv
15-5 Basslt serinte ] plag, [13 plag > cpx > opq > subhedral plsgioclnse
med-K 2 €px clay + Feo hydroxides anhedral epx 0 ~2mm
cale-alk, Tr oliv to ~2 mm
166 Basalt sariate b3 epx 90 plag > cpr > clay + ~3%R vemichon
med-K 3 plag Fe hydroxide> plagioclase aléored, an-
eaje-nlk. Tr olivr opaq bedral epx to 8mm
15-7 Baanlt inter granular 18 plag 70 plag > opx > clay + ~5% vesicles 4 vuga
low-K to 7 epx Fe hydrox.> plagioclase enhedral
tholelitic intereertal Tr olivt apq with minor Inclustone
22-10 Rhyolite v, ine-grnd. 4 biotite 04 microcrystalling blotite largely
low-K holocrystalline 1 quarts intergrowth of gtz replaced by chlorlte
calc-alk, and foldspar
239-11 Rbyolite v. fino-grnd. 1 biotite 00 microcrystalline blotite Inrgely
low-K holocrystalline Tr quares qtg 4 feldepar replaced by
calc-alk. blo. -+ opa chlorita
40-6 Andosite hyalopklitic as plag 40 cryptocryatalline plagioclase cuhedral to
mod.-K to 10 amph to perltic glass subhedral to 4mm
cale-ali, intorsartal -3 opx opq abundant epX anhod., opx euh.
40-8 Andesite pllotaxitic 87 plag 1 L] plag > amph > rare vugs, plaglocisse
med-K 73 8 amph €px > clays dusky, ¢px overgrowth
cale.~alk. intersarinl 2 opx on opx, amphiboly
Tr cpx yellow to red-brown




Table 2: Summary of Petrographic Data (continued)

Sample Rock Texture Phanocrysts Groundmusss Remuarks
No. Type vol.% Minersls  vol% Mlncrals
40-7 Andesite pilotaxitic 30 plag 1) plag > smph > plagloclase to ¢ mm
- 8 amph opq > epx amphlibole rimmed
cale-nlk. a opx by opaguea
40-8 Buault sliotriomorphic 12 cpx 80 plag > cpx > opq plagiocclase to 2mm,
(Gabbro) granular 5 ollv? ~ tlay + chlorite  cpx anhedrsl to 4mm
med.-K 3 plag sector-roned
ealc-alk.
40-9 Andesits pilotaxitic 28 plag 80 cryptocrystalline sbundant broken plagio-
med-K to 8 amoph groundmass > clase, amphibola yeliow to
calc-nlk. latersertsl 8 opX amph > opq > cpx  green-brown pleochroic
1 opq
40-10 Andeslte pilotaxitic a2 plag 133 microerystalline rare vugs with
mod-K 10 smph groundmess with zeclitos, amphibole
cale-slk. 2 opx plag. microlites with apsque rims
<1 Opx opq + broken amph
40-16 Dacite Intersertal b7 plag k43 piag. in brown plagiociase clean to 6 mm
med-K 8 amph cryptocrystalline amphibola khaki-green
cale-nlk. 2 opx groundmass to brown pleochrolc
41-8 Anduoile trachytic 18 piag 77 plag > opq > cpx plagioclase mod. altered,
med-K 3 amph? teace of npatite ampbibole mostly re-
calc-alk, b 4 opq and ortboclase placed by opaquen
454 B.Andesits  Intergranular 12 plag 88 plag > opg > epx extaclsatic, all
Righ-K fractures filled
tholeitic with opagues
46-7 AndesiLe subtrachytic <1 plag 90 plug > ¢cpx > opq amall plag.-rich xeno-
med-K to liths presont with
cajc-alk. intergranular minor cpx + opmques.
47-8 Basslt subtrachytic 16 plag 83 plag > epx > opg highly sltared
med-K to g olivt abndt. brown clays ~8% Irreg.-shaped vugs
tholelitic intergranular Tr opq

opague minerals, oliv== olivine, epi== epidote, chlor= chlorite, amph= smphibolc

volume percent visually eatimated, plag—= plagioclase, cpx== clinopyroxens, opx== orthopyroxens, opq—
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Table 4t Clinopyroxene Analyses

Sample 1§85  15-6  16-§ 15-§ 16-5 405 40-F 405 405 406 400 400  40-6 40-0
40-86  40-0 .
1R 1c R 2C Smec 1R IC  2me 2me 1me IR 2C )3 3C 4R 1C ;:: ?RB
wt.%
810, 5L4 520 §2.2 58.0 626 528 514 613 532 530 523  52. 517 44 534 511 503 62.4
THO, 0.48  0.44 0.58 8.43 034 040 040 058 84T 858 041 059 0.48 030 032 0.87 06.72 032
ALO, 4% 2.00 2.34 2.38 270 223 321 367 &1 297 337 2904 3.32 1.42 171 382  4.00 2.58
FeQ 726 n.82 7.25 5.27 548  5.92 885 T31  0.00 598 488 {485 5.12 8.08 537 £04 5.21 8.13
Cr,0, o4 0.41 0.27 0.5 611 921 027 018 021 008  0.89 (.43 6.31 011 020 0.7  0.57 0.17
MnQ ¢.22 0.8 0.21 6.20 016 018 020 0.24 021 040 014 0.4 0.13 0.10 0.20 0.5 o 0'“
MgO 164 167 165 (6.8 165 I7.L 156 108 160 168 163 1o 100 188 184 101 161 19
CaO 20.1 308 20.5 21.0 2.3 207 2.4 188 204 209 232 217 21,0 190 198 214 200 0.4
Na,O 029 028 0.28 0,28 0.23 927 040 03¢ 037 .37 030 6.30 0.24 024 042 040 .20
Total 902 002 1000 1003 1004 00.8  99.7 085 908 009 1004 008 1000 IONO 097 906  USS  100.0
mol. %
S{n :;.: :;.: :;.; 42.0 449 422 441 804 AL8 42T 457 444 44T 388 400 440 441 PR
F 11.8 11. 0.9 8. . . . .
e 10.¢ 5 4 118 118 10,7 .0 7.k ot a1 0.4 Py a1 a5 12.8
Sample 40-8  40-8 10-8 0-8 40-8 40-8 408  40-10 40-10 40-10 46-18 4010  40-10 40-10 40-10 4010 40-10 40-10
1c R 2C 3R C 4R iC 1R 1C 2R 2C 3R 3C ime R 5C 8R*  7Tmec
wt. %%
S10, 51.7 2.0 52.2 $2.5 53.0 52.2 537 SL.1 604 622 &LD §2.0 507 490 812 528 516 BO.0
TI0, 0.34 0.30 0.40 0.31 023 0.30 0.29 078 077 0.87 0.82 o489 9.80 126 074 058 077 OTE
ALO, 3.20 3.88 2.82 1.02 2.01 3.01 2,56 272 319 216 .42 2.21 448  B.24 340 204 248 340
FeO t.14 7.00 7.2 8.19 506 5.48 584 T7.47 647 T.76  0.00 5.30 0.46 7.46 6574 538 820 5.8
Cr,0, 0.42 0.2 0.23 0.25 0.43 0.30 041 005 072 000 0,57 0.47 055 0.24 050 044 008 0.2
MnO 0.19 0.20 0,23 0.22 0.15 0.156 010 0.24 017 024 0.8 0.10 016 010 0.9 018 028 019
MgO 168.1 167 15.8 18,2 15.2 1.3 18.7 18.1 1E.6 17.2 15.9 17.1 15.6 15.1 15.9 18.9 174 18.0
Ca0 21.5 1.7 21,4 222 22.8 22.3 118 188 2L,z 180 218 214 212 201 212 213 180 214
Na,O 024 0.23 0.24 0.20 0.19 0.18 026 031 035 0.30 0.30 0.48 042 940 031 025 0.30
Total 098 1003 1007 1009 1004 1003 1002 086 08.0 904 998 1000 1004 990 905 OB 900  D9.5
mol.% )
Cn 4.2 14.2 43.6 1.9 15.4 45.3 43.0 41,2 440 388 4B 43.4 444 420 443 4B 371 444
Mg 5.9 14.8 14.8 46.4 45.8 40.0 473 487 401 BB 45T £8.2 451 447 483 470 496 402
Fe L] 11.2 1.8 0.7 7.9 8.7 8.8  1%.1 9.1 12.4 0.7 84 108 124 0.4 85 133 9.4

mcm= core Of smal] eryatal

R== rlm of larger crystal

Cu= core of larger crystal

R"x= rim arcund orthopyroxene



Table 5 Orthopyroxeny Analyses

Sample  40-B 40-5 40-§ 40-B 40-8 40-0 40-8 40-8 40-6 40-40 40-10 40-10
1R 1C 2R 2C 8roc 1R ) X0 2mc ame¢ 1R 1C 2R
we. %
8!0, 63.7 B3.7 54.1 59.9 53.9 53.9 64.1 51.0 55.6 55.1 60.4 58.5
TlO, 0.10 0.13 0.11 0.10 0.0 0.12 2.1} 0.16 0.10 0.12 0.14 0.1%
.A.',O’ 0.5% 0.68 0.63 0.41 0.52 0.48 0.456 0.82 0.41 1.04 0.47 0.47
FeO 18.9 18.7 18.6 18.0 18.3 18.¢ 18.8 18.6 18.1 128 iy.68 19.1
Cry,O4 Q.03 0.04 0.03 0.03 0.03 0.03 0.04 0.08 0.08 0.08 0.06 0.04
MnO 0.78 0.07 0.6 0.60 0.80 0.68 06.70 0.68 0.68 0.26 0.84 0.58
MgO 26.1 25.8 28.8 28,7 25.0 25.1 6.3 244 20.8 20.8 30.7 24.8
Ca0 0.80 0.84 0.89 0.79 0.60 0.7 0.04 1.60 0.90 0.00 0.5a
NlaO 0.02 0.02 0.02 0.08 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04
Total 9.8 949.¢ 100.1 100.5 29.5 100.0 990.9 8.2 101.8 0.8 100.2 90.5
mol.%
Ca 1.4 1.7 1.3 1.6 1.3 1.6 1.3 3.8 1,2 1.7 1.0 1.9
Mg 690.4 895 70.1 80.7 70.3 60.3 60.9 07.4 753 79.0 81.7 88.3
Fe 203 28.8 28.7 28.7 28.3 26.2 28.8 28.8 7.5 19.2 17.8 20.8
Sample 40-10 40-10 40-10 40-10 40-10 £0-10 40-16 40-10 40-18 40-10 40-16 40-10
2C 3R 3C 1R AC Sme 1R 1C IR 20 3R ac
wt.%
8i0g 54.2 563.7 841 538 54.6 53.1 83.7 54.1 B4.1 63.9 548 55.0
’l‘lo, 0.11 0.40 0.11 0.18 0,10 0.13 0.15 0.14 0.18 0.12 0.10 0.14
ALO, 042 040 030 061 035 057 103 Oed 080 077 056 057
FeO 18.9 18.9 18.7 10.2 14.8 19.1 17.7 17.9 168.3 18.2 17.8 17.2
Cry0, 004 002 003 003 00z 003 035 008 D04 004 008 007
MnO 0.70 0,87 0.65 0.76 0.67 0.72 0.568 0.68 0.70 0.04 0.68 0.48
MgO 25.1 25.1 25.3 5.2 25.6 25.1 20.1 26.7 26.9 25.0 28.5 20.4
CaO 0.55 a.53 0.64 0.56 Q.50 0.61 0.80 0.6} 0.82 0.69 0.85 0.69
NI,O 0.02 0.09 0.04 0.01 0.01 0.03 0.06 0.04¢ 0.02 0.04 0.05 0.00
Total 100.1 90.4 9.9 100.9% 100.5 90.2 100.2 00.8 100.4 100, 8 100.8 100.7
mol B
Ca 1.1 1.0 1.3 1.1 1.1 1.0 1.8 1.2 1.2 1.4 1.8 1.4
Mg 80.5 00.7 09.8 09.3 70.2 80.4 71.8 7.0 70.8 70.8 720 72.2
Fe 20.4 20.3 8.9 20.7 28.7 20.8 27.1 278 28.0 27.9 28.8 26.4

me== core of small crystul

Ra= rim of larger crystal

C== core of larger cryastal
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Table 7t Fe-Tt oxlde Analyses

Sample 15-6 15-5 40-5 40-5 40-6 410-8 40-8 40-10 40-10 40-10 40-16
Occurrence Gms Gms Gms Opx Gms Gms Gms Plag Opx Opx Gms

wt.%

$10, 0.03 0.02 1.92 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00
TO, 20.56 22.0 .10 425 0.08 45.0 48.7 461 276 43.9 20.2
ALO, 1,72 1.61 1.72 0.21 3.80 0.06 0.05 1.78 0.41 0.17 0.39
Cr, 0, 0.02 0.02 0.63 0.00 0.49 0.00 0.00 0.02 0.00 0.02 0.07
Fe, O, 25.7 28.1 50.0 18.8 63.3 10.9 9.04 67.2 14.0 18.7 11.0
FeO 471.6 40.3 30.2 38.1 27.8 37.6 38.0 32,6 §2.0 33.5 55.0
MnO 0.51 0.47 0.20 0.41 0.49 0.48 044 0.26 0.15 0.24 0.15
MgQ 1.22 1.08 D.97 2.05 2.33 1.62 1.55 1.50 2,10 3.00 1.65
CnO 0.07 0.04 0.05 0.01 0.01 0.24 0.09 0.22 0.01 0.33 0.01
V,0, 115 0.85 068 048 085 051 0.40 052 0.45 0.38 0.40
Totsl 08.5 98.4 07.6 8.1 90.4 07.2 97.8 98.8 08.2 98.2 97.8
wol.%

Usp 58.1 682.5 22.3 — 1.0 - - 18.8 71.3 - 82.8
R,O, -- - - 18.2 . 10.7 9.7 - - 16.2 —_

Fe allocated to satisfy stoichlometry of R**R5+O, for spinel (82 oxygens) or R,O, for imenlte (8 oxygens),
using the method of Carmichael (1967), Gme= groundmsass, Opxmm orthopyroxene, Plag== plagloclase,
Usp== ulvaspinel.



Tabie 8: Conventioaa! amdl “Ar/®Ar K-Ar aget of dredged ssmples

(») Convendonal analyms

Ssmple Matarial K,0 CAr PAr [OAr Calculated age
No. %) (x10'! mol/gm) (10¢ years)
40-5 Pisg. 0.486 31813 0.502 09112
0482
406 Plag. 0.409 A118 0.546 51412
0.409
«©7 Pisg. 0413 3194 0.465 2412
0,409
40-9 Plag. 0407 2.970 0.492 502415
0.400
40-10 Plag. 0410 2120 0430 525
(100-140) 040 N @331
010 Plag. 0.408 3208 0447 ser’
(60-100) 0.406
4016 Plag. 035 2770 0476 53413
0353
414 Plag. 0281 2281 0.407 S46- 544412
0.290 2264 0591 82/
454 WR 1.966 218 0574 67~ 370 41
1959 2234 0917 nas o
487 WR 0898 643 0334 OO0 L0412
0.900 97 o119 a8
158 Plag. 0ins 2817 0410 82416
03250
156 Pisg. 03791 2920 0.40¢ 094
03762 1921 0197 oy’ 29410

(b) Tota) fudon experiment on amphlbols 40-§

J CArPAr TAPAr SAPAr YAr,  PAr, %A %A, Calc. Age
(%) (%) (%) (%) (10% yearz)

0.006311 19518 11417 0.05204 58 03 6.03 257 56.7143.0




Table 8. Contined

(b) Aralytical dats for lncremental heating experiment on plaglociase 40-16

Temp, 5 PAr TAcPAr° MArMAr ¥Arg, “Ary Py Cale. Age
(o) (%) (%) (% of totsl) (10* years)
J = 0.002319
“ 12518 3.607 4192 0.0 10 13 53,7 176
550 87.02 6,052 02384 07 19.6 31 70.1 $5.6
640 58.16 8004 0.1124 1.6 3.6 49 80.4 134
710 20,02 9.515 0.02885 8.7 61.1 93 50.8 +1.8
800 1588 9.932 001314 20.0 B0.4 187 529 209
900 15.08 .97 0.01057 249 844 282 $2.7 10.7
1010 1493 9.766 0,01043 257 252 218 $28 108
1350 2557 9305 0.04321 57 529 127 56.0 11.4

Recalculated tota) fugion sge= 549 11,1m.y.

(d) Summary of age spectrum snd lsochron analyses

Age spectrum Isochron
Increments Wt meam age BAr Age Intercept Sums/(N-2)
maed (10 yenry) (%) (10° years)
710 - 1350 53.0 105 90.7 1410 312 #15 143
710 - 1010 52.6 +0.6 780 8.6 09 271 121 0.102
800 . 1350 53.0 £0.5 14 519 +0.7 320 311 0.022
800 - 1010 52.8 205 687 524 390 305 87 0.014

*Corrected for YAr decay, half-lfe = 351 days. Subscripts Indicate radiogenic (R), caldnm-derived (Ce), and potassium-
derived (K) argon. Lambda E = 0SS1E-10/yr, lambda B = 4692E-10/yr. Age comstants: ), = 0581x10!® yrd, 3 =

4962x101% 11, #K/K = 1.167x10" atom percent.

Errory are esiimates of the standard deviation of auslytical precision.



Table 9a: Normallxed MaJor element analyses of volcanic rock dredged from
the continental margin fo the Bering Sea on crulse L9-82-BS

Sample No. 40-5 40-8 40-9 40-10 40-16 41-6 45-4 45-7 47-8
Roek type And, Bas. And. And. Dac. And. And. Baa. Bas.
Chem. class med-K med-K med-K med-K med-K med-K  high-K med-K  med-K

eale cale cale cale eale cale thol onke thol
{wt %)
SlD, 02.7 523 81.7 82.2 05.1 82.8 50.0 81.0 §2.4
ALO, 10.9 14.2 18.9 10.9 17.1 17.0 10.0 10.8 18.1
FeO" 4.40 8460 3.71 4.32 a.25 5.44 4.00 8.14 8.33
MgO .30 8.00 2.46 3.30 2.76 2.28 1.60 3.44 6.15
CaO §.31 12.2 5.40 5.83 1.02 5.10 8.72 832 9.44
NARO 4.48 2.25 5.16 1.18 4.67 4132 41.04 41,28 3.80
KgO 1.67 1.07 1.88 1.87 1.79 1.68 2.02 134 0.74
TI0, 0.47 0.67 0.47 0.70 0.33 0.80 1.67 078 1.57
l:’gOs 0.43 0.20 0.23 0.35 0.18 0.20 0.71 0.50 032
MnO 0.05 0.14 0.03 0.07 0.04 0,06 0.00 0.06 a.12
Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
LOI 3.74 3.2 a.15 2.1G 1.67 2.95 4.77 3.26 2.86
FeO® /MgO 1.30 1.08 1.52 1.28 1.18 2.45 2.76 1.60 1.02

FeO* 1s total Iron as FeO

XRF snalysls by A. Bartel and K. Stewart, pro}. leader J. Taggart

LOI 1s loss on Ygnitlon nt 000~ C

Andee andesite, B.and.s= basaltic andesite, bas.— basalt, dsc.== dacite, rhy.== rhyolite, chemical
cla.sa(mcnl.lon (thol= tholelltlc, calcam cale-slkallne) after Mlyashiro (1074), and low-K, roed-K, high-K after
G (1081).



Table O0bs Major element analyses of voleanie rock dredged from
the contlnentsl margin In the Bering Sea on erulse L5-78-BS

Sample No. 10-2 10-3 15-3 16-5 16-6 16-7 22-10 22-11
Rock type Bas. Bas. B.And. Bas Bas. Bas, Rhy. Rhy.
Chen. clses loweK low-K  high-K med-K med-K low-K low-K low-K

tho) thol thol cale ealc thol enle eale
(wt %)
sto, 403 40.4 53.4 61.2 §2.¢ 623 71.4 71.0
ALO, 159 15.8 183 178 18.6 173 18.1 16.8
Fe, O, 0.35 0.38 440 3.01 3.00 4.04 0.44 0.51
FeO 133 4.30 3.43 4.22 2.80 5.40 0.82 1.18
MgO 4.11 4.40 2.48 8.30 4.03 4.71 0.94 1.08
CsO 7.47 8.16 8.18 10.4 10.7 0.30 2.48 2,47
Na, 0 4.81 4.04 3.25 3.42 8.74 3.2¢0 6.11 6.03
K,0 0.05 0.03 2.45 1.03 1.34 1.08 1.32 1.87
T1O, 1.72 174 1,00 0.95 1.02 0.84 0.20 0.20
P,0, 0.23 0.21 0.45 0.28 0.31 0.40 0.07 0.07
MnO 0.23 0.20 0.09 0.11 0.14 0.14 0.02 0.02
H, 0+ 413 270 0.82 0.75 0.04 0.01 0.42 1.2
H,O 1.57 1.04 1.32 176 1.30 2,18 0.10 0.14
Co, 0.09 0.00 0.06 0.07 0.05 0408 0.07 0.04
Total 100.1 00.0 9.7 101.3 101.6 1028  100.6 101.2
FeO"/MgO 2.43 2.27 2,08 1.19 1,24 2.06 1.20 1.58

FeO® s total Iron as FeO

FeO, CO,, H O by wet chemical analysls, B. Lal analyst, J.M. Baldwin pro). losder
other oxldes by XRF analysis, 5. Ramage analyst, V.G. Mossott, pro]. leader
abbreviations for rock types and chemical class as in Table 0a



Table 10a¢ Trace clement analyses of volcanie rock dredged from the

eontinental margin tn the Berlng Sea on crulee LO-82-BS

Sample No.  40-§ 40-8 10-% 410-10 40-16 11-8 45-4 46-7 47-8
Roek Type And. Bea And. And Dae. And.  B.And. And Bas.
Chem. ¢lage med-K med-K med-K med-K  med-K med-K  med-K  high-K med-K
cale cale eale eale eale csle thol cale thol
L]
Ba 237 1300 240 1100 220 498 1248 802 242
Nb 7 5 <8 <8 <B <8 11 6 0
Rb 33 22 14 81 20 32 40 24 18
Se 860 353 p11 507 §70 838 843 5080 437
Zr 134 51 130 160 135 117 180 182 19
Y 15 17 11 17 12 16 23 10 20
.8
Hf 3. 1.2 33 3.5 2.9 2.0 1.3 3.8 2.7
Ta 0.16 0.07 0.18 0.24 0.12 0.17 0.81 0.23 0.25
Th 1.54 0.74 1.8 1.85 1.43 1.32 2.55 1.88 0.64
La 0.04 5.01 10.1 143 8.45 12.8 324 13.4 10.0
Ce 30.9 10.8 31.8 30.7 18.0 213 B0.0 25.8 18.0
Nd 11.0 .48 122 10.8 B.94 13.0 20.0 14.4 14.0
Sm 2.47 2.60 2.30 3,28 1.88 2,91 §.81 3.10 8.50
Eu 0.79 0.82 0.85 111 0.68 1,02 1.95 1.05 1.40
Thb 0.33 0.48 0.30 0.40 0.29 0.39 0.80 0.49 0.73
Yb 0.81 1.45 0.72 1.26 0.03 0.99 2.00 1.28 2.87
Lu 0.12 0.22 0.16 0.19 0.10 0.18 0,26 0.20 0.32
8¢ 11 50 11 13 B.3 10 21 10 30
Co 17 43 11 10 10 10 18 20 a2
Cr 67 440 84 89 34 18 18 00 2260
Zr/Nb 140.1 10.2 27.8 220 27.0 23.4 10.4 22.0 10.8
K/Rb a06 104 078 §01 512 130 410 403 478
K/Ba BB 6.5 1.} 13 85 28 14 37 26
(Ba/La), 2.5 27.1 2.6 8.4 2.7 4.0 5.0 2.3 2.4
(La/Sm) 2.1 1.0 2.4 3.4 2.5 2.4 2.1 2.3 1.6
La/Yb 11.8 3.5 14.0 11.4 138.4 12.7 100 10.5 4.2

*XRF analysis, R. Johnson and K. Dennen analysts, J. Lindsay pro). leader

*® INAA analysls, J.S. Mee soalyst, C.A. Palmer pro). leader
abbreviations for rock types and chemlcal clawsification as in Table 9



Table 10b: Trace element analyses of volcanic rock dredged from the

continental margin In the Bering Sea on cruise L6-78-BS

Sample No. 10-2 10-3 15-3 15-5 15-8 15-7 22-10 22-11
Rock Type Bas. Bas. B.And. Baas. Bas. Bas. Rhy. Rbhy.
Chem. clsss low-K low-K high-K med-K med-K med-K low-K low-K
thol thol thol cale ealc tho! cale cale
]
Ba 80 104 550 230 238 416 269 280
Nb b <6 <56 <5 27 32 <5 <&
Rb 2 2 50 22 20 20 18 20
Sr 132 120 524 825 354 894 827 832
Zr 78 78 107 83 80 07 78 70
Y 25 28 28 21 31 28 5 5
L 2]
Ht 2.3 2.3 3.1 2.0 2.1 2.2 2.2 2.3
Ta <0.8 <0.8 0.31 0.37 0.38 0.26 0.15 0.18
Th 0.4 0.8 2.8 1.3 1.3 1.5 1.3 1.0
La 8 8 14 8.5 7.5 12.5 6 4
Ce 17 16 32 18 18 25 11 10
Nd 8 11 23 11 12 16 8 6
Sm 4.4 4.0 5.0 2.9 3.5 4.4 1.5 1.4
Eu 1.3 1.3 1.4 0.0 1.0 1.1 0.4 0.4
Tb 0.87 0.81 0.70 045 0.55 0.73 0.15 0.12
Yb 3.0 2.9 2.5 1.9 2.1 2.5 0.3 0.2
Lu 0.51 0.45 0.39 0.29 0.33 0.38 0.04 0.03
Sc 42 44 23 33 35 30 2.2 1.5
Oo 37 35 20 30 87 28 3.4 8.3
Or 1390 132 2] 2238 228 35 17 16
Zr/Nb 15.6 <15 <2} <13 ] 2 <18 <16
K/Rb 207 126 418 392 386 448 884 588
K/Ba 5.2 2.4 38 36 48 22 41 41
(Ba/La), 1.3 2.2 4.0 3.6 3.2 3.3 5.4 7.0
(La/Sm), 0.8 0.8 1.8 1.2 1.2 1.6 1.8 1.7
Ls/Yb 2.0 2.1 5.8 3.4 3.8 5.0 17 20

"XRF analysls, H.J. Rose, J. Lindsay, B. Mceall, R, Johnson analysts, H.J. Rose proj. leader

“* INAA analysis, L.J. Schwars analyst, P.A. Bacdccker pro}. leader
abhreviations far rock type and chemical classification aa In Table 9



Figure 1.

FIGURE CAPTIONS

Map of the Bering Sea continental shelf and slope showing dredge locations (cir-
cles).

Figure 2. Plagicclase compositions for dredged aamples show a considerable range in An and

Or content in a given sample. Or increases with decreasing An content, and An
correlates in a general way with CaO content of the whole rock composition, shift-
ing the range of compositions toward progressively lower Ap from basalt to
andesite. However, andesjte and dacite compositions overlap and show a larger
compositional range with some crystal cores as calcic as those in basalt.

Figure 3. Pyroxene compositions for dredged samples on 2 Ca-Mg-Fe ternary diagram show a

Figure 4.

Figure 5.

Figure 8.

Figure 7.

narrow range in clinopyroxene compositions with limited iron eprichment trend,
especially for the basalt (field for andesites striped, for basslts stippled). Composi-
tions of Aleutian clinopyroxene show a larger range but overlap compositions of
the dredged samples. Orthopyroxene compositions of the dredged andesite and
dacite are high Mg hypersthene with a narrow range in Wo.

Age spectrum and isochrons for “A:/”A.r incremental heating experiment for a pla-
gioclase separate show concordant ages and a well defined plateau.

FeO*/MgO ratio vs. 8i0, in volcanic rocks dredged from the continental margin in
the Bering Sea shows tholeiitic and cale-alkalic compositions (Miyashiro, 1874).
Compositions of lava from the Aleutian arc are shown for comparison (shown as
fields, data from Kay and others, 1082). Note that fields overlap in the range of
basaltic compositions. Compositions of rocks from Bogoslof Island (squares),
located some distance behind the Aleutian are, have higher FeO®/MgO ratios at a
comparsble Si0, content.

K,O vs. SiO, in voleanic rocks dredged from the continental margin show most
samples in the med-K compositional field of Gill (1981). Two samples are high-K,
and the meta~basalt and rhyolite are low in potassium. Except for one high-K
composition (15-3), all samples fall within the compositional range of Aleutian
lava. Samples from Bogoslof Island are higher in potassium than Aleutian samples.
Symbols and data for fields as in Figure 5.

Harker diagrams for the dredged samples show compositions similar to Aleutian
voleanies. Na O (a) increases and Al,O, (b), TiO, (¢c), and CaO (d) decrease with

increasing SiO, but show considerable scatier, especially in the basaltic range.
Symbols and data sources s8s in Figure 5.

Figure 8. H{-Th-Ta plot for dredged samples shows all except the two meta-basalt samples in

Figure 9.

the field for convergent plate margin. The meta-basalt samples lie in the field for
E-type MORB and oceanic island basalt (Fields after Wood and otbers, 1980).

Chondrite-normalized rare earth elements (REE) and Ba concentratione for dredged
samples: (a) Basalt (< 53% SiO,) show relatively flat profiles, whereas (b) more
differentiated samples (> 53% SiOQ) show steeper slopes and light REE enrich-
ment apd lower heavy REE abundances. The meta-basalt (c¢) show flat profiles



Figure 10.

with erratic spikes in the light REE region indicative of secondary slteration. The
rhyolites (d) show very steep slopes and extremely low heavy REE abundances.
Except for the meta-basalt, all samples show pronounced upward spikes for Ba
characteristic for arc compogitions. Values normalized to Leedy chondrite (Masuda
and others, 1976).

Choodrite-normalized Ba/La vs. La/Sm plot for dredged samples shows high
Ba/La ratios typical for arc compositions except for one of the meta-basalt which
plots in the field for ocesn floor basalt. Note sample 40-8 with a Ba/La ratio of 27
falls outside the figure. Fields for island arc and ocean floor basalt from Basaltic
Volcanism Project (1681).
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