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STUDIES OF COLUMBIA GLACIER, ALASKA 

SURFACE TOPOGRAPHY OF THE LOWER PART OF 
COLUMBIA GLACIER, ALASKA, 1974-81 

By L. A. RASMUSSEN and M. F. MEIER 

ABSTRACT 

The method of optimum interpolation is used to get surface alti- 
tudes on the nodes of a square grid superimposed over a map of the 
lowest 18 kilometers of Columbia Glacier, a large, grounded, iceberg- 
calving glacier near Valdez, Alaska Vertical aerial photography has 
been obtained about five times a year since July 1976. For each of 29 
flights, the altitude of the glacier surface has been determined photo 
grammetrically at the locations of prominent surface feahues. The 
large amount of data, the noisy character of the topographic data due 
to the rough surface, and a modeling need to know precisely how the 
ice surface changes with time require a sophisticted interpolation p m  
cedure. The recently developed method of optimum interpolation is 
used here because it minimizes the interpolation error by developing 
and using knowledge of the statistical properties of the data The 
reduction of these surface altitude and velocity data will lead to the 
best data set ever generated for a glacier, and that data will be 
valuable for investigating calving mechanics, for studying glacier 
dynamics, and particularly for using in modeling the drastic retreat of 
Columbia Glacier. 

Topographic maps of the glacier surface were obtained from flights 
on July 27, 1974, and September 1, 1981. The first approximation of 
the topography on the date of a particular intervening flight is taken 
to be the linear combinaton of the two maps that best f i ts  the photo 
grammetric data from that flight. The deviations of the individual 
photogrammetric points about this first approximation are the quan- 
tities to which the method of optimum interpolation is actually 
applied in estimating the altitudes of the grid nodes. Between 116 and 
202 photogrammetric points are available from flight to £ight. 

The statistical properties of the surface topography are d d b e d  in 
terms of the wrrelation between the altitude changes at a point and 
the changes at some other point. This wrrelation has a high degree of 
homogeneity and isotropy, both spatially and temporally, and was 
little affected by the glacier flow. This remarkable regularity permits 
the use of a very simple implementation of the optimum interpolation 
algorithm. 

The random error in the photogrammetrically determined altitudes 
is estimated at 3.5 meters by comparing the individual points with 
maps made from the same flights. A ground-truth sample of 58 in- 
dividual and averaged points was used to test the interpolated results 
for three flights. The asymmetry of these sample deviations about the 

first-approximation surfaces suggests that there may be a systematic 
error of about +1.5 meters in the photogrammetrically determined 
altitudes. The standard error in the altitudes interpolated on the grid 
nodes is estimated to be 2.5 meters. 

INTRODUCTION 

Columbia Glacier is a large (67 km long and 1,100 kmz 
in area), calving glacier near Valdez, Alaska (fig. 1). 
Although much of its bed is below sea level, the glacier 
is grounded everywhere except for some short, floating 
segments along its margins where it spills into ice 
dammed, freshwater lakes. The terminus pushes 
against a moraine shoal; the top of the shoal is about 
20 m below sea level, but a short distance upglacier the 
bed is about 400 m below sea level. 

Recent studies of calving glaciers in Alaska have 
shown that calving speed is related to water depth at 
the terminus, and that if a glacier retreats off of a shoal 
so that its terminus faces deep water, the retreat will 
become rapid and irreversible (Post, 1975). Columbia 
Glacier clearly has the potential to make a drastic re- 
treat. This situation is of practical as well as academic 
interest, because drastic retreat will cause a large 
increase in iceberg discharge; some icebergs from C e  
lumbia Glacier drift into shipping lanes in Valdez Arm 
(Kollmeyer and others, 1977). 

To predict whether Columbia Glacier might begin 
rapid retreat and, if so, when and by how much the ice 
berg discharge might increase, the U.S. Geological 
Survey began an intensive study in 1977 involving 
aerial photography and ground-based and boat-based 
fieldwork (Meier and others, 1978). Results of the field- 
work during the 1977-78 principal data year have been 
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FIGURE 1.-Index map of Columbia Glacier, A .  Arrows show direction of flow. Main ice stseam is indicated by longer arrows and 
dots at 2-kilometer intervals along the longitudinal coordinate system. The border of the interpolation domain is dotted. 
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reported (Mayo and others, 1979; Sikonia and Post, 
1980), and a preliminary prediction was issued in June 
1980 (Meier and others, 1980). W o  postulated formula- 
tions of the calving relation were investigated (Brown 
and others, 1982; Sikonia, 1982). Detailed calculations 
from three predictive models (Rasmussen and Meier, 
1982; Sikonia, 1982; Bindschadler and Rasmussen, 
1983) soon followed; they all reinforced the initial expec- 
tation of substantial retreat during the mid-1980's, 
along with an order-of-magnitude increase of the iceberg 
discharge. 

The ground-based and boat-based fieldwork was sup- 
plemented by vertical aerial photography done about 
five times a year since July 1976, usually for the 
18-kilometer-long lower part of the glacier only. For 
each flight, photogrammetric analysis has yielded ac- 
curate coordinates of points on the glacier surface 
(Meier and others, 1984) and, because identifiable sur- 
face features can be followed form one flight to the next, 
average flight-toflight surface velocities have been 
determined (Fountain, 1982). 

This photogrammetric data set is characteristically 
different from data sets obtained by traditional field 
programs, in that the data are numerous (about 7,000 
separate point coordinate determinations), the data are 
irregularly distributed in both time and space, and some 
important information (such as changes in glacier thick- 
ness over time) may be immersed in noise owing to the 
spatially irregular glacier surface. The data contain only 
the two vriables, surface altitude and displacement. 
Numerical modeling of changes in flow and shape of a 
glacier requires (1) data interpolated on a grid fixed in 
space, (2) special treatment to obtain the best possible 
estimate of time changes in that field, and (3) knowledge 
of the errors and statistical properties of the data set. 
These modeling requirements, imposed on a nontradi- 
tional data set, make it necessary to use a sophisticated 
data-analysis procedure. Use of this procedure may 
have broader application, especially as modem methods 
of data acquisition greatly increase the complexity of 
data analysis. 

The central problem in this analysis procedure is the 
need to use all relevant information in the interpolation 
algorithm. Only by doing so can the signal-tonoise ratio 
be maximized. Large-scale swells and swales in the sur- 
face topography tend to persist because they are caused 
by the underlying bedrock, and this means that the 
interpolation scheme can be aided if the temporal as 
well as the spatial dimension is included. Thus, general- 
purpose contouring programs, which deal with a twe 
dimensional field only, are not sufficient. Constructing 
topographic maps by photogrammetry from each set of 
aerial photographs also ignores the temporal dimension 
and, in addition, would be prohibitively expensive. 

The method of interpolation reported here incor- 
porates both temporal and spatial information. It  has 
the additional advantage of requiring and producing in- 
formation on the statistical structure of the field. 
Statistical structure refers to how well the altitude of a 
certain point correlates with the altitudes of neighbor- 
ing points, distributed in both space and time, and 
whether that correlation depends on location (a test of 
homogeneity) or on direction (a test of isotropy). Defin- 
ing this statistical correlation function is critical to the 
method of optimum interpolation and also enables 
determination of the interpolation error. 

The interpolated surface topography, when combined 
with the surface velocity and other variables on the 
same grid, will constitute an extraordinarily rich data 
set for use in time-dependent, two-dimensional models 
of glacier flow. The data set must be internally consist- 
ent with respect both to the continuity equation and to 
the flow law, and it must be faithful, within the bounds 
of observational error, to the field data. Because Colum- 
bia Glacier is a calving glacier, the data set will be 
useful for continuing the investigation of the calving 
mechanism as well as for studying glacier dynamics 
generally. Because rapid retreat appears to have begun 
(Meier and others, 1984), the future extension of the 
data set will include the only detailed, highquality data 
on this process in existence. 

The report begins with a description of the photo- 
grammetric data in the section "Original Topographic 
Data": first the inherent altitude error is estimated, and 
then the temporal and spatial distributions of the 
data are described. Because the benefit of low interpola- 
tion error is gained at the cost of first determining the 
variable's statistical properties, several preliminary in- 
terpolation schemes are introduced in "Statistical Prop- 
erties of the Surface Topography"; these results are 
then used to estimate the point-topoint correlation of 
altitude changes, between points displaced from one 

1 another in both space and time, and to determine 
whether the correlation is homogeneous and isotropic. 
Described in "First Approximation to the Interpolated 

I Altitudes" are how the 1974 and 1981 topographic 
maps were used to make norm fields for the times of 
intervening flights and how deviations of irregularly 
positioned photogrammetric points were established as 
the variable actually interpolated; also discussed is ob- 
taining a mathematically proper function for represent- 
ing the correlation. In "The Interpolation Algorithm," 
the derivation of optimum interpolation is briefly 
recapitulated and several of its chief properties are men- 
tioned, the result of applying it to the photogrammetric 
data is compared, for several tens of points, with alti- 
tudes surveyed from the glacier surface, and the exact 
specification of the algorithm actually used is given. 
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Finally, in the section titled "Discussion," errors and 
shortcomings of the results are considered, the elusive 
ness of defining the surface altitude of a severely frac- 
tured and irregular ice mass is mentioned, and specula- 
tions are offered on extrapolating the data set. 
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ORIGINAL TOPOGRAPHIC DATA 

Two topographic maps for the lower reach of the 
Columbia Glacier surface (indicated by the box in fig. 1) 
were produced photogrammetrically at 1:50,000 scale 
and 10-meter contour interval for the flights on July 27, 
1974 (fig. 2), and September 1, 1981. For these and the 
intervening 27 flights, the glacier surface altitude was 
determined photogrammetrically at numerous irregu- 
larly positioned points (table 1). Except for the Septem- 
ber 1, 1981, map, which was produced by Air Photo 
Tech of Anchorage, Alaska, all the processing was per- 
formed by the USGS Western Mapping Center at 
Menlo Park, Calif. The coordinates of the individual 
points are compiled in Fountain (1982). The 1974 map 
was smoothed by the photogrammetrist, but the photo- 
grammetrist who made the 1981 map followed contours 
in and out of crevasses. Figure 3 shows a section, at 
1:50,000 scale, of the original September 1, 1981, map. 

Both maps were digitized by visually interpolating 
altitudes on a 200-meter square grid (4 mm at 1:50,000 
scale). The uncertainty of how to interpolate between 
contour lines was used, to a modest degree, to attempt 
to make the resulting difference field relatively free of 
spurious small-scale features. The manual contouring of 
the digitized values for the 1981 map is shown here 
(fig, 4) because its smoothness, which is comparable 
with that of the 1974 map, makes 1974 to 1981 changes 
in the glacier surface easier to discern than using the 
original 1981 map. The box in figure 4 indicates the sec- 
tion shown in figure 3, and the difference between the 
1974 and 1981 maps is shown in figure 5. 

The digitizations of the two maps are used as the 
bases for the ultimate interpolation to the nodes of the 
square grid. This requires determining the altitudes, at 
the times of each of the two maps, at the g y  loaation of 
any of the (irregularly positioned) photogrammetric 
points from any of the intervening flights. For inter 
polating between the nodes of the 200-meter grid, a 
piecewise planar surface is assumed to pass through the 
altitudes at the nodes. Every grid cell is subdivided into 
four triangular regions, each of which has as its vertices 

the center of the square and two adjacent vertices of the 
square. The altitude z at the center of the square is 
taken to be the average of the altitudes at the square's 
four vertices; this z i s  also the ordinate at the center of 
the square of the plane best fitting the points at the four 
vertices in the least squares sense. For each triangle, the 
surface is defined to be the plane passipg through the 
altitudes at the triangle vertices. That is, if a local coor- 
dinate system is chosen so that the coordinates of the 
surface at the vertices of the square are (t,r,2)=(0,0,Zm), 
(1,0310), (1,1311), (0,1301), then the surface is interpo- 
lated according to 

The interpolation surface is continuous in ordinate but 
has discontinuity of derivative at the edges of the 
triangles, both within a square and from square to 
square. Although it is not relevant to the present 
analysis, this interpolating surface has a practical 
advantage over other zero-order-continuity inter- 
polating surfaces, such as the bidimensional linear inter- 
polation: the construction of a normal from an external 
point is a direct, linear calculation. The result of this 
interpolation for the July 27, 1974, map is denoted 
f2(x,y), and for the September 1, 1981, map, f,,(x,y), the 
numbers 2 and 30 corresponding to the numbers of 
aerial photographic flights as listed in table 1. 

ALTITUDE ERRORS IN 
INDIVIDUAL PHOTOGRAMMETRIC POINTS 

The lower reach is a very rough surface (fig. 3, 6), and 
this roughness may contribute to the lack of perfect 
agreement between the maps and the individual photo- 
grammetric points (IPP's) from the same flights. When 
drawing a contour line on a map, the operator smooths 
out small-scale roughness and attempts to do so without 
introducing bias. When picking IPP's for coordinate 
determination, the operator must see nearby surface 
topography to form a stereo image; thus, isolated peaks 
or depressions are not used. However, the local surface 
seen around an IPP does not necessarily correspond to a 
mean surface over a larger area. Coordinate determine 
tion is accurate to within about 2 m, but it is subject to 
human error (R. W. Olsen, 1980, oral commun.). Because 
of the roughness of the actual surface, the representative 
ness of any particular point is a serious cunsideration. 

For each of the two maps, the distribution of the 
departures of the IPP altitudes from the digitization of 
the map was carefully examined, to estimate how much 
of the discrepancy was due to interpolation error and how 
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490"' E 95 E 00 E 
Topography by U.S.G.S.,  WMC from 
photography taken July 27, 1974. 0 1 2 3 KILOMETERS 
Modified by Project Office, Glaciology, 
WRD, Tacoma. 

FIGURE 2.-July 27,1974 (flight 2), surface topography, in meters above sea level, with 10-meter contour interval, 
prepared photogrammetrically by the U.S. Geological Survey Western Mapping Center at Menlo Park, Calif. 
Approximate scale is 1:100,000. The border of the interpolation domain is dotted. The field of view of figure 6 
is indicated. 
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TABLE 1.-Date and coverage of arid photography 
pecimal year indicates time of flight; t=1978.000 at 0000 hours on January 1, 1978, and increases by 11365,2422 for each day thereafter. Coverage designations: a, most of glacier; 

b, whole glacier; c, lowest 4 km; d, lower reach; e, icefall reach; f, central basin. IPP=individual photogrammetric point 1 

Flight 
Number Date 

Decimal 
year 

Flight 
altitude 

(m) 

Total 
number of 

IPP's Coverage 

1977 
6 --------Jan. 19 
7 --------Mar. 7 
8 -------- Apr. 23 
g -------- June 2 

10 --------July 7 
11 -------- A u ~ .  29 
12 -------- NOV. 8 

1978 
13 -------- Feb. 28 
14 -------- April 19 
15 --------June 11 
16 --------July 30 
17 -------- A u ~ .  26 
18 -------- NOV. 8 

1979 
19 --------Jan. 6 
20 -------- April 12 
21 -------- A u ~ .  18 
22 -------- Oct. 20 

1980 
23 -------- Feb. 29 
24 --------May 12 
25 --------July 22 
26 -------- Sept. 2 
27 -------- Oct. 30 

1981 
28 --------M=. 7 1981.180 7,010 d 125 
29 --------June 16 .457 7,010 d 123 
30 -------- Sept. 1 .667 7,010 d 123 

much was due to inherent error in the IPP altitudes. The 
results are summarized in table 2. The total departure is 
defined to be the difference, ET=ZIpp(x,y)-flx,y). To in- 
vestigate the discrepancy that may be due to interpola- 
tion error, both in the digitization and in the interpola- 
tion within the 200-meter grid, only those points on the 
wrong side of a contour are considered. That is, if an IPP 
with altitude ZIP, falls between contours Z and Z+10 m, 
its departure E ,  is reckoned as follows, regardless of the 
position of the point relative to the two contours: 

This is the extreme interpretation of the topography 
between the contours to give the minimum possible 
pwl; for example, FTJ may be as great a s 3  m when 
E,=O. The mean square total departure E: between 
the IPP altitudes and the digitization of the map is 
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0 1 2 3 4 KILOMETERS 
I I I I I 

FIGURE 3.-Surface topography of lower part of Columbia Glacier, 
section of September 1, 1981 (flight 301, map. Surface topography 
in meters above sea level, with 10-meter contour interval, prepared 
photogrammetrically by Air Photo Tech of Anchorage, Alaska 
Approximate scale is 1:50,000. Shown are original contours (light) 
and smoothed contours (heavy). 

assumed to consist of two parts: that due to the two 
sources of intewolation error E; and that due to the ac- 
tual departure Ei of the IPP altitudes from the true 
surface altitudes. Assuming these two c'omponents to 
be statistically independent, 

If the excess of the total departure above the wrong- 
side departure is assumed to be equally divided b e  
tween - interpolation error and further contribution to 
Ei, then 

so that, from equations 3 and 4: 

Each map, therefore, affords a separate estimate of E,, 
as shown in table 2. An additional assumption underly- 
ing this analysis is that an IPP's map position is cor- 
rect, and that any error it may have is only in its 
altitude. The sensitivity of the ultimate results to the 
uncertainty of the actual value of E, will be investi- 
gated in a later section. 

SPATIAL DISTRIBUTION OF 
INDIVIDUAL PHOTOGRAMMETRIC POINTS 

If the IPP's are to be used as the source data for inter- 
polating altitudes on the nodes of the square grid, it is 
important that they give good coverage over the d e  

main of the interpolation. The spatial distribution of the 
IPP's is examined in two ways. Shown in figure 7 is a 
partitioning of the studied region into 24 squares, each 
2 km on a side. Table 3 gives the percentage distribu- 
tion of the points, square by square, for flights 2 
through 30. Consistent with table 1, the total number of 
points falling within the 24 squares generally declines 
with time after flight 9. The nonuniformity of the distri- 
bution over the squares follows a pattern with strong 
persistence; for example, square 21 is relatively densely 
covered, and square 14 is relatively sparsely covered, for 
all  22 full-coverage flights (flights 9 through 30). Fortu- 
nately, the increase of surface roughness downglacier is 
accompanied by an increase of IPP density downglacier. 

Another indication of the quality of the spatial distri- 
bution of the IPP's is how well they sample the 7.1-year 
(1974-81) altitudechange field (fig. 5), which is con- 
sidered separately in two sections. The dashed line in I figure 7 approximates the position on both maps of the 
zone of steep slope running the full width of the glacier 
at the constriction. The two sections are the region com- 
mon to both map digitizations, as subdivided by the 
dashed line; they are here termed the central basin 

I (above, 36 km2) and the lower reach (below, 69 km2). 

1 Neglecting possible digitization error here, the true 
average altitude change over the 7.1 years is obtained 
by subtracting the 200-meter digitizations of the two 
maps; for the central basis the altitude fell 12.0 m, for 
the lower reach it fell 27.0 m, and for the combined 
region it fell 21.8 m. What is taken here to be the true 
change is determined by about 900 digitization nodes in 
the central basin and by about 1,700 nodes in the lower 
reach, a much greater density than the IPP's. Table 4 
gives for each full-coverage flight, for each section, the 
IPP-sampled 7.1-year change as a fraction of the true 
7.1-year change; this fraction is used to scale the IPP- 
sampled altitude change from July 27,1974, until a par- 
ticular flight, in order to estimate the true altitude 
change until that flight. There may be two causes of the 
apparently better sampling in the lower reach: (1) the 
fivethirds greater density of points and (2) the greater 
altitude change there, which must be compared with the 
estimated error in the IPP altitudes. 

The time profile of the altitude change for each sec- 
tion is shown in figure 8; for both sections the change 
was much greater over the second half of the 7.1-year in- 
terval than over the first half, This must be regarded as 
only a zero-order estimate of the altitude change. 

I 
STATISTICAL PROPERTIES OF THE 

SURFACE TOPOGRAPHY 

Knowledge of the statistical structure of a field vari- 
able is important to the specification of an algorithm for 
interpolating among given values of that variable. The 
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Base by Air Photo Tech, Inc. 
from September 1 ,  1981 air photography, 0 1 2 3 KILOMETERS 
modified and smoothed by Proiect 
Office, Glaciology, WRD, ~acoma 

FIGURE 4.-sm00thed September 1, 1981 (flight 30), surface topography, in meters above sea level, with 10-meter 
amtour interval The dashed box indicates the section shown as figure 3. Approximate scale is 1:100,000. 
The border of the interpolation domain is dotted. 



Base by Air Photo Tech, Inc. 0 1 2 3 KILOMETERS 
from September 1, 1981 air photography, I 

modified and smoothed by Project 
Office, Glaciology, WRD, Tacoma. 

FIGURE 5.-Altitude decrease between July 27,1974, surface topography (fig. 2) and smoothed September 1,1981, 
surface topography (fig. 4), with 10-meter contour interval. Approximate scale is 1:100,000. The border of 
the interpolation domain is dotted. 
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FIGURE 6.-Photograph taken on October 8, 1975, showing the roughness of the glacier surface. The major crevasse valleys seen here are about 
20 m deep and are spaced about 50 m apart. The location of this picture is shown on figure 2. U.S. Geological Survey photograph by 
L. R. Mayo. 

TABLE 2.-Estimated e m r  distribution of individual photogrammetric point altitudes 
Errors: Between dl n points and map digitization (ET). between digitizetion and only points on wrong side of a contour (Ew), due to digitization interpolation (EI), and between all points 

and true d a c e  topography (EJ; see eq. 2-51 

Minimum ----------- ---- (m) -16 -12 -- -- -9 -6 -- -- 
Mean ------------------ (m) -0.9 -0.1 -- -- 0.7 0.4 -- -- 
Maximum ------------ --- (2) 30 27 -- -- 23 17 -- -4 

Mean square ------------ (m ) 16.8 5.3 5.8 11.0 19.4 6.8 6.3 13.1 
Root-mean-square -------- (m) 4.1 2.3 2.4 3.3 4.4 2.6 2.5 3.6 
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x ,  IN KILOMETERS 

FIGURE 7.-Spatial classification of individual photogrammetric points (IPP's). The twenty-four 2-kilometer squares are the 
basis for the distribution statistics given in table 3. The six lettered mosses (A, B, C, D, E, F )  are the study points for in- 
vestigating the statistical structure of the surface topography. The smdl circles are the IPP's from flight 11 (at the begin- 
ning of the principal data year on August 29, 1977); the solid circles are odd-numbered points, and the open circles are 
even-numbered points. The dashed line separates the central basin (above) and the lower reach (below). Also shown are some 
of the rows (I) and columns (J) of the 762.5-meter data grid. The dotted border shows the region common to the digitiza- 
tions of the two maps (figs. 2, 4). 



TABLE 3.-Spatial distribution of individuulphotogmmetric points (IPP's) over the 24 squares shown in figure 4 
p'he total mfm d y  to tho88 points falling within one or another of the 24 squarea; because of mundiug, the sum of the percentages may not be 100. The average percentage value is 4.21 

Total Average Squareby-squaa distribution of toeal number of IPP's. in percent 
Flight number of number per 

IPP's BQUW 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

2  ---- 205 8.5 1 0 1 2 2 5 4 7 3 5 5 6 4 3 6 5 2 4 5 5 6 5 5 5  
3  ---- 119 5.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 5 0 1 5 1 4 3 2 1 1 6 3 1 3  
4  ---- 130 5.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 8 1 1 5 1 2 6 2 1 1 4 3 1 5  
5  ---- 56 2.3 0 0 0 0  0  0 0 0 0 0 0 0  0 0 0 0 0  0 1 4  0 5 4 1 4 0 1 8  
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interpolation method adopted here is that known as 
"optimum interpolation" (Gandin, 1963). Because the 
time rate of change of the surface altitude has profound 
glacierdynamics implications, through the equation of 
continuity, the interpolation is conducted not only 
within the x, y domain but also within the t domain. The 
salient statistical representation to be obtained is the 
correlation function, which states how well the altitude 
at some point correlates with the altitude at some other 
point; the method of optimum interpolation has these 
correlations as its coefficients. A further consideration 
is whether the same function applies regardless of where 
within the region the two points are and regardless of 
the relative orientation of the two points. These two 
properties, respectively, homogeneity and isotropy, are 
usually associated with the x,y domain, but they also 
have analogs in the t domain. 

A PRELIMINARY INTERPOLATION 

Optimum interpolation cannot be applied until after a 
correlation function is assumed. Because the original 
data occur irregularly in space and time (table 1, fig. 7), 
a preliminary interpolation scheme is necessary for in- 
vestigating the statistical s t r u c m  of the surface 
topography, from which the correlation function can be 
deduced. The scheme devised here uses an isotropic 
inversesquaredistance interpolation among the resid- 
uals from a seconddegree polynomial that best fits, in 
the sense of least squares, all of the IPP's for a par- 
ticular flight, for either the lower reach or the central 
basin. That is, first the polynomial 

Two different variations of this scheme were con- 
sidered. Polynomials of degree one and degree zero were 
also used, and the averaging of residuals was also done 
for all points within each of several fixed radii of in- 
fluence ranging from 500 to 3,000 m. These variations 
were tested by applying them to those nodes of the 
762.5-meter grid for which values could be determined 
from the digitizations of the two maps. For the "nearest 
three" averaging rule, the seconddegree polynomial 
agreed better with the digitized values than the firstr 
degree, which agreed better than the zerodegree. For 
the seconddegree polynomial, the "nearest three" 
averaging rule gave results better than most of, but not 
all of, the several influence radii tested. The use of a 
restrictively small radius of influence along with the 
zerodegree polynomial, on the other hand, often pro- 
duced very poor results. 

Table 5 shows the result of using the "nearest three" 
rule with the seconddegree polynominal for each of the 
two maps, for the lower reach and for the central basin. 
Except for the case of the central basin on September 1, 
1981, for which 25 interpolations were made from only 
21 IPP's whose distribution is highly skewed, the 
residual-averaging substantially reduced the error. 

CORRELATION CALCULATIONS 
AND COMPARISONS 

The statistical structure of the surface topography is 
investigated by using the correlation between the alti- 
tude at some point (0,0,t+r) and the altitude at some 
other point (d,8, t): 

is formed, where the summation is over all n of the 
IPP's for that flight for that region. Then, to interpolate 
the altitude Z'(xo,yo) at some arbitrary point, the resid- 
uals at the three nearest points are averaged by weight- 
ing each by the reciprocal of the square of the distance 
from (xo,y0): 

where (4 0) are polar coordinates in the x, y plane and t is 
time. Time is defined in terms of decimal years, with 
t=1978.000 at 0000 hours on January 1, 1978, and in- 
creases by 11365.2422 for each day thereafter. The sum- 
mations are over as many flights as possible, subject to 
the constraints 

I and the bar denotes averaging over those same flights; 
EIZ(x,y)-P(Ly)l I [(x-xo)2+b'-y~)q , (8) when r=O, the sumations are over al l  22 flights (flights 

where the summations are here over the three points 
nearest (xo,y0). 

9 through 30). Equations 6-8 are used to interpolatethe 
altitudes at each of the six study points A, B, C, D, E, F 
(fig. 7) and at each of 56 points surrounding each study 
point. The surrounding points consist of all combina- 
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TABLE 4.-Estimated auemge altitude changes from July 27,1974, until the date of the indicated flight (table 1) for the lower reach and the 
lower part of the central basin 

[AU chauge values are in meters, and all are negative, indicating a falling surface] 

Number of Ratio of sampled Sealed change Scaled change as 
Flight sample h?f$2%4, from July 27. 1974, fraction of total 

points tk%,"rye*& until fight date until fight date 7.1-year change 
Lower Central Lower Central Lower Central Lower Central Lower Central 
reach basin reach basin reach basin reach basin reach basin 

2 7  JULY 1974 

FIGURE 8.-Time profiles of the surface altitude change since July 27,1974, averaged over the lower reach (LR) and over the central basin (CB). 
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tions of d=200, 400, ..., 1,400 m and 6=E, NE, N, ... , 
SE. For each study point and for each time lag 7, the 
correlation coefficient is averaged over direction for 
each distance 

and is averaged over distance for each direction 

The curves in figure 9 are I., (d ,~ )  versus d for the six 
study points and for T=-1.0, -0.5, 0, 0.5, and 1.0 a 
Similarly, the curves in figure 10 are < (8,~) versus 6. For 
each study point, when ~ $ 0 ,  the values of Z(O,O,t+r) are 
interpolated from a hand-drawn curve through the 
altitudes for each of the 22 flights for that study point; 
the values of t used in equation 9 are those flight dates 
that satisfy the associated constraints (relation lo), so 
that between-flight interpolation need not be conducted 
for any of the surrounding points. The flights that can 
be used with T=-1.0, -0.5,0,0.5, and 1.0 a are, respec- 
tively, 15-30, 13-30, 9-30, 9-27, and 9-25 (table 1). 

The question of spatial homogeneity can be examined 
by comparing, in either figure 9 or figure 10, the six 
curves occurring vertically for any one of the five time 
lags T. In the case of perfect homogeneity, the curves for 

TABLE 5.-Result of interpolating at a point using a regional second- 
degree polynomial corrected by averaging the residuals of the 
three individual photogrammetric points (IPP's) nearest that 
point 

Jul 27 1974 September 1, 1981 
( k g ~ t  2) (flight 30) 

Lower Central Lower Central 
reach basin reach basin 

Number of IPP's ---------- 176 35 101 21 

Number of interpolation 
points (at nodes of the 
762.5-meter data grid) ---- 107 25 103 25 

E,, root-mean-square error 
at interpolation points 
using only the second 
degree polynomial fitted 
to IPP's ------------- (m) 13.3 14.5 12.9 9.8 

E3,  root-mean-square error 
at interpolation points 
when "nearest three" 
residual averaging used 
with second degree poly- 
nomial -------------- (m) 6.4 11.4 8.1 10.3 

the six different study points would be identical. The 
most substantial departure from this condition is that 
the curves for E and F for 7 = f  0.5 a, and the curves for 
A for all T, are markedly depressed below the average. 

The question of spatial isotropy can be examined by 
considering the variation with direction within each of 
the curves of figure 10. In the case of perfect isotropy, 
each curve would be a horizontal line segment; perfect 
spatial homogeneity would further require that for any T 

the curves would all have the same rvalue for all six 
study points. 

The apparent departure from perfect isotropy is not 
reduced if the flow of the glacier is considered. The open 
circles in figure 10 represent distanceaveraged correla- 
tions from equations 9 and 12, but the Z(d,B,t) values 
used in equation 9 are interpolated by equation 8 from 
altitudes at IPP's that have been allowed to move with 
the glacier flow from time t until time t + ~ .  Because the 
ycomponent of velocity v is much greater than the 
xcomponent (Fountain, 1982), only the former is used 
in advecting the points; that is, 

ax,y)=z(x,?) , (13) 
where 

t+7 

9 =Y +IV[X,Y(t)idt 
t 

(14) 

is used instead of Z(x,y) in equation 8. Because ?=y 
when T=O, and because few velocity data are available 
for the central basin, circles do not accompany the 
curves in figure 10 either for 7=0 or for study point A. 

The question of temporal isotropy can be examined 
by comparing the curves (for any study point in either 
figure 9 or figure 10) for T=-0.5 a and ~=+0 .5  a, and 
for T=-1.0 a and ~=+1 .0  a. There is a high degree of 
left-right (negative T, positive T) symmetry in both 
figure 9 and figure 10. 

Although the ideals of homogeneity and isotropy are 
not unambiguously demonstrated by the curves of 
figures 9 and 10, neither is any other pattern of correla- 
tion unambiguously demonstrated by them. Possible 
causes for the discrepancies from the ideals include: 
the n used in equation 9 is determined by the number 
of flights satisfying condition (relation lo), which 
ranges from n=22 for T=O down to n=16 for T= -1.0 
a; the Z(O,O,t+r) values used in equation 9 were inter- 
polated visually from curves drawn by hand through 
the Z(O,O,t,) values at flight dates t,; correlations at 
study point A are relatively more strongly con- 
taminated by the altitude errors in the IPP's than are 
the study points in the lower reach, where the altitude 
changes are more than twice as great as they are in the 
central basin. The small number of realizations (that is, 
22 or fewer flights, depending on the value of 7) 
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DISTANCE, IN METERS 

FIGURE 9.-The function i8(d.7) versus d for each study point (A, ... , F)  and for each of the five indicated time lags 7 
(see eq. 9, 11). Although continuous curves are shown, iB(d,7) ia known only at the eight d-values 0, 200, 400, 
..., 1,400 m. 
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FIGURE 10.-The function F&9,7) versus 9 for each study point (A, ... . F) and for each of the five indicated time lags 7 

(see eq. 9, 12); although continuous curves are shown, F&9,7) is known only at the eight @-values E, NE, N, 
..., SE. The open circles indicate values obtained by using individual photogrammetric points allowed to move 
with the glacier flow (eq. 13, 14). 
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precluded investigation of temporal homogeneity, 
which is usually termed "stationarity." Because no 
other pattern is unambiguously demonstrated by the 
curves of figures 9 and 10, the assumptions of 
homogeneity and isotropy are made, both spatially 
and temporally, including the type of isotropy that, 
surprisingly, permits neglecting the effect of the 
glacier flow when 720. 

FIRST APPROXIMATION TO THE 
INTERPOLATED ALTITUDES 

Because optimum interpolation can be applied better 
to deviations from a norm than to the raw values of the 
variable themselves (Gandin, 1963, p. 86-92), an inter- 
polation scheme is adopted to provide that norm. The 
correlation function then expresses the correlation of the 
deviations from this norm as a function simply, because 
of the assumptions of homogeneity and isotropy, of the 
horizontal distance d=[(xl - ~ , ) ~ + ( y ,  - y2)y2 between two 
points Z(xl,yl,tl) and Z(x2,y2,t2) and of their time dif- 
ference ?=It,-t,l. As a consequence of adopting this 
interpolation scheme, two decisions concerning the do- 
main of the interpolation are made: (1) altitudes are inter- 
polated only for the times of the flights, although there is 
no theoretical bar to interpolating altitudes at any arbi- 
trary time, and (2) a single procedure is applied to the 
entire combined region of the lower reach and the central 
basin, thereby avoiding the introduction of a discon- 
tinuity between these two regions, but at the risk of in- 
creasing the interpolation error. 

For each flight, the norm field fLky) is obtained by 
taking the altitude change from flight 2 until flight L to 
be a linear function of the change from flight 2 until flight 
30: 

in which the coefficients are estimated by minimizing 

where the sum is over all mL IPP's for that flight having 
(qy) within the domains of the digitizations of the two 
maps. 

A split sample analysis of the mL points is used to es- 
timate the root-mean-square error in approximating the 
true topography by the norm field f, (x,y). The assump- 

tion is made that if the mL points are a good sample of 
the true topography, subject to their inherent altitude 
error, then a randomly chosen large subset of them is 
also a good sample. Two subsets of the points are used, 
the odd-numbered ones and the even-numbered ones, 
taking them in the order in which they appear in Foun- 
tain (1982). The x,ydistributions of the two subsets are 
shown in figure 7 for flight 11, which is typical of these 
distributions for the other flights. First, and 
(b,),,, are obtained by using only the odd-numbered 
points in equations 15 and 16; then (EfhvEN is computed 
by using and (b,),,, in the application of equa- 
tion 16 to only the even-numbered points. Second, 
(E bDD is computed by applying equation 16 to only the 
odd-numbered points, using (%hvEN and (bLhvEN ob- 
tained by applying equations 15 and 16 to only the even- 
numbered points. Third, (%), and (b,),, are obtained 
by using all m, points in equations 15 and 16; then 

is computed by using those coefficients in the ap- 
phcations of equation 16 to all mL points. Table 6 gives 
mL, all three sets of coefficients, and all three values of 
E,. Although flights 3-8 only partially cover the region 
(table 3), and therefore are not used in constructing the 
correlation function, they are amenable to the applica- 
tion of equations 15 and 16 and are therefore included in 
these results. 

Another interpretation of Ef is as an indication of the 
variance of the data's deviations about the norm. 
Although there is a pronounced spatial distribution of 
the total altitude change between the times of the two 
maps (fig. 5), with the magnitude of the change gen- 
erally decreasing upglacier, a seconddegree polynomial 
(eq. 6) very poorly represents the x, ydistribution of the 
squares of the deviations from fL(x,y). The goodness of 
fit (r2) of the polynomial is also given in table 6; its low 
values support the reasonableness of the assumption of 
spatial homogeneity of the variance. 

Because the IPP altitude errors are assumed to be un- 
correlated with the altitudes themselves, the variance V 
of the altitudes about the norm field is estimated as the 
excess of the average Ef2 over E;. The split-sample -- 
values are averaged because they are independent esti- 
mates, in that points used to compute E are separate 
from those used to form the norm-field coefficients, 
whereas (Ef), is computed from the same points used 
to form the coefficients. Taking E;=12 m2, the result is 
also coincidentally V= 12 m2, compared with 11 m2 if 
the were used. The variance is assumed to be con- 
stant m tune as well as in space, and the flight-Wflight 
variation of Ef is interpreted to be random-sampling 
variation. If a separate V were to be associated with 
each flight, and if each were to be obtained by subtract- 
ing E;= 12 m2 from E: then V would vary from flight to 
flight between extreme values of zero for flight 10 to 
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TABLE 6.-The coefficients aL and bL used in equation 15 to interpolate the norm field fL (x,y) for flight L from the digitizations of the two 
maps f2 (x, y) and f30 (x, Y) 

Vhe coefficients are estimated from all mL points (ALL), from only the odd-numbered points (ODD), and from only the even-numbered points (EVEN). The error is estimated by using (aL, 
bL)ODD with only the even-numbered points to give by using (aE bL)EVEN with only the odd-numbered points to give and by using (aL, bL)ALL with all mL points to 
give (YALL. The goodness of fit (Fit) is for a eecond-degree polynomial P 2 k y )  fit to the squares of the deviations of all mL points from fL(z,y] 

Flight m~ ODD EVEN ALL E, (m) Fit 

a~ b a~ b~ a~ b EVEN ODD ALL 

6 48 0.439 -4.2 .798 7.6 .602 1.2 6.31 8.68 6.80 .34 
7 ............................ 45 .574 1.9 .626 1.7 .598 1.7 4.68 5.38 4.70 .27 
8 ............................ 100 .564 6.2 .478 3.8 .520 5.0 4.92 5.40 5.04 .I9 
g ............................ 176 .455 8.7 .273 4 .O .360 6.2 3.94 4.57 3.95 .12 
10 ............................ 196 .342 4.3 .366 4.9 .353 4.5 3.45 3.04 3.24 .04 

34 m2 for flight 12. Part of the variation of Ef may be 
caused by variation in Ep, but estimates of that quan- 
tity are unavailable for fights 3 through 29. If a varia- 
tion of equation 15 were used, one that lacked the con- 
stant term b,, then the variance would be 14 m2 and the 
deviations about the norm field would have a nonzero 
mean. 

THE CORRELATION FUNCTION 

The empirical function r*(r,d) gives the correlation 
between deviations from the norm field f,(x,y) at differ- 
ent points and different times. Following from the 
assumptions of homogeneity and isotropy, the function 
depends only on the horizontal distance d between the 
two points and on the time difference r. 

For r=0, any of the flights can be used with itself to 
estimate the ddependence r*(O,d). For &0, the time 
distribution of the flights (table 1) permits investigating 

r*(r,d) for only selected r. Table 7 gives the value of r* ob- 
tained, after the fashion of equation 9, by considering all 
the deviations 

Az,(x,~,)=Z,(x,~,)--f,(x,~,) (17) 

I falling within each of seven different r-intervals and 
within each of ten different d-intervals. These are calcu- 
lated directly from the deviations, without being 
vitiated by the crude interpolation necessary to get the 
Z(0,0,t+~) values between flight dates for computing 
r(d,O,r) at the six study points. 

The empirical r8(r,d) distribution of table 7 has several 
prominent characteristics: (1) it indicates a moderately 
well behaved function of d and r, (2) it approaches unity 
as d and T both go to zero, (3) for all r, it approaches zero 
for large d, and (4) for small d, it remains positive for all 
r. The x,y,t density of the IPP's is high enough that 
several points can easily be obtained for interpolation if 
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TABLE 7.-Values of the correlation coefficient calculated from the deviations from the norm fields for the indicated time difference (T) inter 
vals and the indicated horizontal distance (dl intervals 

Fhe value of the correlation coefficient is shown above, and the numbers of irregular1 positioned hotogramrnetric points falling within the particular rinterval and d-interval is shown 
below. The pairs of fights having the particular time di&rence are %o shown. The correlation for r=d=O is assumed to be unity] 

- 

rinterval Flights d-interval (m) 
(a) 0-40 180-220 380-420 580-620 780-820 980-1.020 1,480-1.520 1.980-2.020 2,480-2.520 2.980-3.020 

0 ----------(9,9), (10,lO). ... (1.000) .622 .574 .413 .380 ,238 .I39 .043 -.I15 
(30.30) 1 8 151 448 479 937 1.MO 1,109 1.300 1.301 

,241 --------(9,11),(13,15),(14.16). 
to .283 (16.18),(19,20).(25,27), .I00 .I17 .473 .436 ,367 .309 .I96 ,049 .045 -.003 

(28.29) 168 168 95 298 359 541 660 758 760 850 
,486 --------(I 1,13).(13.17),(20,22), 
to .534 (21.23),(23,26),(26,28). .409 .401 .396 .302 208 .219 .I73 .lo8 ,014 -.088 

(28.30) 108 66 224 287 273 451 546 711 739 764 
.I56 --------(10,14).(11,15),(12,17), 
to .I96 (18.21).(19,22),(22,25), ,167 ,206 .301 ,244 281 243 ,071 .043 -.001 -.074 

(2639) 68 113 188 299 379 532 641 773 844 919 
.980 -------- ~ 9 ~ 1 5 ~ ~ ~ 1 1 ~ 1 7 ~ ~ ( 1 2 ~ 1 8 ~ ,  
to 1.024 (14,20),(17,21),(23,28). .304 .293 .I97 .389 .I76 251 204 ,074 -.047 -.075 

(26,301 55 117 172 298 422 461 701 770 789 822 
1.136 -------(9,16),(10,17),(11,18), 
to1.202 (12,19),115.21).(17,22), .417 .624 .346 .402 293 .268 .I35 -.012 -.045 -.082 

(19,23),(21,27) 61 142 199 393 464 579 848 904 996 1029 
1.295 -------(10,18),(11,19),(14,21), 
to1.358 (15.22).(18,23),(19,24), .481 .478 .338 ,218 .I91 ,103 ,169 .052 -.023 -.030 

(23.29),(24,30) 34 129 188 326 392 505 665 706 884 877 

&own pe;fectly (Gandin, 1963, p. 70-72), the inter- 
uolation error decreases as more and more points are 

they are required to be within a d and a 7 substantially 
smaller than the ranges of those variables represented 
bv the em~irical data If the correlation function is 

1 I I 

;sed. albeit more and more slowlv.   ow ever.-the corm I I 

function having a positive transform (Oberhettinger, 
1973) is 

lation function here is not knownvPerfectly. 
Requiring a point to be within d=l  km and 7=0.39 a 

still includes a large number of points, and it also re- 
stricts the domain over which r8(7,d) must be approx- 
imated functionally to the domain over which the em- 
pirical values are themselves better behaved. This d e  
main actually used is twice that large ( d s  2 km and 
7 50.78 a), because the method of optimum interpolation 
requires the correlations between the included points 
themselves, as well as between the included points and 
the point where the interpolation is made; for example, 
two of the included points may each be within a kile 
meter of the point where the interpolation is made, but 
they may be 2 km away from each other. 

Because the correlation function must have a positive 
Fourier transform (Gandin, 1963, p. 38-40), the class of 
functions that can be used for approximating the r'(7,d) 
data is severely restricted. Two analytical functions 
that are widely used (Gandin, 1963; Thiebaux, 1975) are 
the damped cosine and the Gaussian 

~ ( ~ , d ) = ~ - & ~ 7 ~ - 8 ~ d ~  . (I8) 

The empirical data do not exhibit oscillation of sign, 
which would imply using the damped cosine. Another 

which approximates the empirical data much better 
than equation 18 does. 

The relative suitabilities of function 18 and function 
19 for approximating the r8(7,d) values of table 7 are 
compared in figure 11. In both, the coefficients are 
chosen to minimize 

1 
E:= - C CR(7.d)-?(7,d)l2 , 

30 
(20) 

in which the summation is over al l  30 combinations of 
7=0, 0.27, 0.51, and 0.78 a and d=O, 0.2, 0.4, 0.6, 0.8, 
1.0,1.5, and 2.0 km except for the two smallest d-values 
when 7=0. The minimizing coefficients are &=2.79, 
bl.11 in function 18 for Er=0.109, and a=0.470, 
P=0.755 in function 19 for E,=0.069. Not only are the 
residuals produced by function 19 smaller than those 
produced by function 18, but they are also more ran- 
domly distributed. Function 18 systematically pro- 
duced negative residuals for small values of either T or d 
and positive residuals for large values; this is true to a 
lesser degree with function 19 as well. 

Although the assumption of spatial homogeneity per- 
mits determining r as a function of only the distance d 
as well as the time difference 7, the Fourier transform 
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must be of the same dimensionality as that of the space 
in which the data points exist. The transform 

in which the summation is over a larger number M of 
applications of the method at some particular point 
(x, y ), and AZ, is the true deviation from fL(x,y) there. 

If equation 23 is substituted into equation 24, and if 
the squaring is performed, then 

distance d, may be shown to be positive for all finite, I 
positive values of the coordinates-q5,, q5,, and 4, (appen- 
dix A). 

THE INTERPOLATION ALGORITHM I 
Because the present work is a part of a larger effort in 

investigating the behavior of Columbia Glacier, and of 
glaciers generally, rather than pursuing questions in 
data analysis itself, no direct comparison has been made 
between various interpolation methods. Optimum inter- 
polation is widely used in the objective analysis of 
meteorological variables. In making an individual inter- 
polation, it tends toward using all of the available data 
and it provides an estimate of the interpolation error. In 
analyzing rainfall patterns in southcentral France, 
Creutin and Obled (1982) compared it with several other 
methods, including the highly similar kriging, and 
found it to be superior, overall. Although it is called op- 
timum interpolation, it extrapolates as well; that is, it is 
not restricted to estimating values at points that are in 
any sense between the given points. 

If AZ, is assumed to have zero mean over large M, and if 
its variance is taken to be constant, as suggested by 
table 6, then the first term on the right-hand side of 
equation 25 is the variance of AZi, which is denoted V. If 
equation 25 is divided by V it becomes 

where ri is the correlation between AZi and A?, and is 
calculated from equation 19 using the distance d and 
time difference T between the two data points having 
those deviations. Minimizing EG with respect to the wi 
is accomplished by requiring 

OPTIMUM INTERPOLATION I a ~ ~ l a w ~ = o  (27) 

The interpolated altitude at some point for flight L, 
ZL(x,y), is obtained by adding the estimated deviation 
there, A Z ~ ,  to the norm: 

The method of optimum interpolation (Gandin, 1963) is 
used to obtain A% as a linear combinatin of the devia- 
tions AZ, at N nearby points selected, in general, both 
from flight L and from other flights close in time to 
flight L: 

The weights wi are obtained from a system of simulta- 
neous linear equations that minimizes (and, therefore, 
gives the method its name) the error: 

for 1 5 i 5 N, and solving the resulting linear system, in 
which the rc=l, 

to obtain the wi. If equations 28 are multiplied by wi, 
and if the sum is taken over i, then equation 26 may be 
simplified to 

The condition 0 s E i  < V is always fulfilled if the matrix 
of equation 28 is positive definite, which is ensured 
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(Gandin, 1963, p. 39) if the correlation function used to 
form the rij has a positive Fourier transform. 

The foregoing development is for the simplified 
special case in which the AZi are known exactly. 
Because they are not, being subject to the IPP altitude 
error given by equation 5, the linear system must be 
modified (Gandin, 1963, p. 79) to 

for determining the w,, which are then used in equation 
23 to get the interpolant AZ: and in equation 29 to get 
the error estimate EG. Using equation 30 is predicated 
on three assumptions regarding the IPP altitude errors: 
(1) they have zero mean, (2) they are not correlated with 
the true altitude values, and (3) they are not correlated 
with each other. The detailed comparison of the IPP's 
with the two maps, to compute the error E, of equation 
2, revealed no contradiction of these assumptions. 

The presence of the error term in equation 30 has two 
important consequences (Gandin, 1963, p. 80-84). First, 
i t  increases the interpolation error E,. Second, the value 
of Ep that produces the smallest EG is its true value; 
that is, EG will be increased if a value of Ep is used that 
is either larger or smaller than its true value. 

If the errors at the individual points are indeed uncor- 
related, or poorly correlated, the resulting interpolation 
error EG can be less than E,. As the points used tend to 
be farther away from the interpolation point, and the 
correlations ri0 tend to zero, the weights also tend to 
zero, and the interpolated value Zi(x,y) tends to the 
norm k(x,y), whether or not the error term is present. 
However, if the interpolation is conducted among the 
values of the variables themselves, instead of among the 
deviations from the norm, this does not occur unless the 
algorithm is modified in a way that increases the error 
(Gandin, 1963, p. 89). 

SOME INDEPENDENT TEST DATA 

An abundance of ground-truth topographic data was 
obtained for Columbia Glacier by standard surveying 
methods (Mayo and others, 1979), and the data are use  
ful for investigating the dependence on N, and for other 
purposes. Unfortunately, the ground-truth altitudes 
Z(x,y,t,+At) are for dates slightly different from the 
flight dates t,, and the interpolation model obtains 
altitudes only for the flight dates. For use in comparing 
the interpolated values against them, the ground-truth 
altitudes are adjusted to the nearest flight dates; it is 
assumed that the time rate of change of the actual 
altitude at some point (x, y) is equal to the average time 

rate of change of the norm field there during the time in- 
terval between the two flight dates tL and tL1 that 
bracket the date tL+At of the point to be adjusted. That 
is, the adjusted value is given by 

in which L1=L+Atll Atl. 
Many surface altitude points given by Mayo and 

others (1979) are for times close to one or another of the 
three flights 11, 15, and 17. Because of the practical dif- 
ficulty created by the extreme roughness of the glacier 
surface, the observations are skewed spatially; within 
the combined region, they are concentrated primarily in 
the central basin and secondarily near the centerline in 
the lower reach (fig. 12). To relieve the skewness in the 
sample of observations selected to compare the interpe 
lation algorithm against, central basin points were re- 
quired to be nearer a flight date than were lower reach 
points. Another device used for improving the spatial 
uniformity of the sample was the averaging, of all three 
space coordinates, of observations lying within about 
100 m of one another. To permit investigation of the ef- 
fect of the number of points N used in the interpolation 
equations 30, only those ground-truth points were ad- 
mitted to the sample that had at least 10 points among 
the IPP's within 1.0 km and 0.39 a. Table 8 gives the 
distribution, by Z and by At, of the 58-point sample 
selected; the greatest equation 31 adjustment was 0.8 
m, and the root-mean-square value was 0.3 m. 

The three flight-by-flight sections of the sample are 
highly similar in the distribution of their departures 
Z',(x,y)-fL(x,y) from the norm field. The mean depart- 
ures for the three sections are, respectively, -2.7, -3.7, 
and -2.3 m; the median departures are -3.1, -4.0, and 
-2.1 m; and the departures are nearly uncorrelated 
with the altitude itself, the three ? values all being less 
than 0.04. The mean for the entire sample is -2.8 m, the 
median is -3.0 m, and 46 of the 58 departures are 
negative. A systematic discrepancy between the 
photogrammetric data and the surfacesurvey data may 
be the source of the predominant negativeness of the 
departures. 

The error estimate E; obtained by comparing the ad- 
justed ground-truth altitudes Z',(x,y) and the altitudes 
z'(x, y) interpolated by the algorithm is given by 

in which the summation is over the 58 points in the 
I ground-truth sample. I t  is compared in figure 13 with 
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DISTANCE, IN KILOMETERS 

FIGURE 11.-Comparison of best fitting carrelation function (eq. 18) with &=2.79, ib1 .11  
(dashed line), best fitting correlation function (eq. 19) with (~=0.470, P=0.755 (solid line), 
and empirical i*(r,d) from table 7 (solid e s ) .  

EG as estimated by the algorithm (eq. 29). Each is shown 
as a function of N; for any N, the 1 ~ ~ ' s  having the 
highest correlation with a particular point (qy, t )  

Z8(x, y, t).  Because neither the variance V of the 1PP's 
about the norm field nor their random error E,, is known, 
the sensitivity of both E, and EL to these two quantities 

through equation 19 are the ones used in estimating is also examined. The actual error EL depends only on 
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x ,  IN KILOMETERS 

FIGURE 12.-Spatial distribution of individual and averaged points surveyed from 
the surf- 

the ratio EPV because only that quantity appears in 
equation 30, from which the interpolating weights wi are 
obtained. The estimated error EG depends on each of 
them independently, on the ratio in equation 30 and on 

V alone in equation 29, and is much more sensitive to 
the values of these algorithm parameters than EL is. 

In the special case in which the employed correlation 
function exactly describes the true statistical structure 
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firat number in each table enby is the number of single pohta. and semd is the 
number of avmwed mtu. Tbe time diffemnw between the surface m e y  and the flight 
date is At, in *s] 

of the variable being interpolated, and the observational 
error Ep and the variance V are both perfectly known, 
the interpolation error E, is a nonincreasing function of 
the number N of data points used in equations 23 and 
28. None of these ideals is fulfilled by the Columbia 
Glacier photogrammetric data Belousov and others 
(1968, p. 92) found that for interpolating the geopoten- 
tial height of an isobaric surface in the atmosphere, N 
should be 5 or 6 for dense distributions of points and 
might be increased "to 7 or 8, but no more" for sparse 
distributions. 

If a systematic error 6 2  in the photogrammetric data 
is assumed to contribute to the discrepancy between the 
two sets of data, and if it were to be subtracted out, then 
the interpolated values would be adjusted to 
z'L(x,y)-6Z, the estimated error E, would be unaffected, 
and the sample error would become, for some particular 
N, 

This adjusted error is shown as a function of N in figure 
14 for selected 62, using V=Ei= 12 m2. 

The Z',(x,y) themselves are subject to two sources of 
error, the surveying itself and the equation 31 adjust- 
ment to the flight dates. If the mean square error for 
these two sources combined is taken to be 1 m2, then the 
corrected error, for some N and some 62, is 

This is also shown as a function of N in figure 14 for the 
6Z=O case. 

THE RESULTS 

The optimum interpolation results for flights 3-29 ap- 
pear in appendix B. The interpolated altitude Z*,(x,y) is 
given to the nearest tenth of a meter, and the estimated 
error < EG > + 1 is given in meters. Although the number 
of tenths of a meter in q(x,y) is not a significant figure, 
dropping it would lead to an unacceptably large roun- 
ding error in forming the average time rate of change of 
surface altitude between flights, especially for short in- 
terflight intervals. Also given in appendix B are the 
digitization interpolation results for flights 2 and 30, and 
the estimated digitization error E, (eq. 4, table 2) is 
rounded up to the next whole meter: < E, > + 1 =3 m. 

actual error E b  

estimated error EG 

values in parentheses are 

(V,EZp), both in square meters 

FIGURE 13.-Error EG estimated by the algarithm (dashed line) and 
actual error E b  (solid line) between algorithm d t s  and altitudes 
surveyed from the glacier surface, as functions of the number N of 
individual photogrammehic points (IPP's) used for int8rpolnting at 
any particular point. The sensitivity of these two quantitieg to the 
variance V of the IPP's about the norm field and to the inherent 
IPP altitude error Ef, is included for various postulated values for 
those two parameters. The actual error EL depends only on the 
ratio EalV because only that quantity appears in equation 30, from 
which &e interpolating weights are obtained. The estimated ems 
EG depends on each of the two parameters separately, on the ratio 
in equation 30 and on V alone in equation 29. Although continuous 
curves are shown far clarity, the quantities exist only for integer N. 
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Altitudes are interpolated only for the flight dates t, 
and only on those nodes (I,J) of the 762.5-meter data 
grid, on which velocities are given in Fountain (1982), 
that are common to the domain of the digitizations of the 
two maps. The (gy) coordinates of the IPP's are related 
to these grid coordinates and to the Universal 
Transverse Mercator (UTM) System according to 

and 

UTM Easting-490,000 
UTM Northing-6,750,000 

1 . (36) 

Because the photogrammetric coverage of flights 3-8 
was of only the lower part of the lower reach, the correla- 
tion study was conducted only for flights 9-30; however, 
the algorithm based on flights 9-30 was also applied to 
flights 3-8, but only in the vicinity of the photogram- 
metric coverage. 

Because it is so restricted spatially and temporally, 
the ground-truth sample probably provides a good esti- 
mate of neither the systematic error in the photogram- 
metric data nor the actual error EG in the interpolation 
algorithm. Moreover, the error EG is only estimated by 
the algorithm; the correlation function, the variance 
about the norm, and the random error are all imper- 
fectly known. Of several possible ways of reconciling 
the apparent difference between E, and Eb, increasing 
the estimate of EG is probably the safest. The evidence 
from the ground-truth sample is too weak to justify 
instituting a systematic 62 adjustment of the photo- 
grarnmetric data, and it is too strong to ignore. As the 
uncertainties in the interpolation model tend to cause 
EG to be underestimated, and as the scale of errors does 
not warrant reporting it more precisely than in whole 
meters, simply rounding up each estimate to the next 
greater integer number of meters is consistent with 
both these considerations. The 58-point root-mean- 
square of these rounded-up values is shown in figure 15 
as the curve labeled < EG > + 1; for comparison, it shows 
the E, curve from figure 13 for V=Ei=12 m2, and it 
shows the E," curve from figure 14 for 62=0. 

All three curves in figure 15 are decreasing functions 
of N for 0 5 N s  9. So also is the fraction A 0  of the N 
selected interpolating points that are from the same 
flight as the point being interpolated (fig. 16); it is also 
obtained from the ground-truth sample, in which flights 
9-12 were used for interpolating for flight 11, flights 
13-17 for flight 15, and flights 14-19 for flight 17. The 
advantage of a small A 0  is the heightened flight-to- 

FIGURE 14.-Effect, on actual error E b  between algorithm results 
and altitudes surveyed from the surface, of some postulated values 
of the possible systematic error 62 in the photogrammetry data 
(solid line). Also shown is the adjusted error EllG obtained by taking 
6Z=0 but assuming a l-squaremeter mean square error for the 
combined effect of surveying error and error in the equation 31 ad- 

+ justment to the flight dates (dashed line). Although continuous 
curves are shown for clarity, the quantities exist only for integer 
values of the number N of individual photogrammetric points used 
by the algorithm for interpolating at any particular point. 

flight influence on the interpolation; if each flight's data 
were interpolated independently, the inferred surface 
topography would have an erratic time variability. 

Finally, the algorithm (eq. 22, 23, 30) is used with 
both the variance V and mean-square random error E; 
taken to be 12 m2. I t  is applied to the NslO IPP's 
having the N highest correlations with the point being 
interpolated, provided they are all within a distance 
d 11.0 km and time difference 750.39 a of that point. 
Equation 19, with (r=0.470 a and P=0.755 krn, is used 
to approximate those correlations, as well as the corn  
lations between the N points themselves. The estimated 
error EG is obtained from equation 29 and is reported as 
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the next greater integer < EG > +l. If no IPP meets the 
d and 7 conditions, then the norm fL(x,y) is used as the 
interpolated altitude, and the error is taken to be 
<dV> +1=4 m. 

The algorithm-estimated error EG, through equations 
19 and 29, is a decreasing function of the (G y,t) density 
of the IPP's. The root-mean-square of the rounded value 
< EG > + 1, when averaged over the 154 interpolated 
points, rises from about 2.5 m for the early, 190-IPP 
flights to about 3.1 m for the late, 120-IPP flights. I t  
also rises, secondarily, during periods of long interflight 
time intervals and falls during periods of short ones. 
The timedensity dependence is weaker than the space 
density dependence; when the interflight interval is 
large, there are still many T=O IPP's from the flight of 
the date for which points are interpolated. 

DISCUSSION 

No analysis of the interpolated topography is con- 
tained in this report. The altitudes are given to one more 
decimal place (tenths of a meter) than is significant as 
altitude explicitly. The additional decimal place is in- 
cluded because the data implicitly contain information 
on the altitude change rate, which has profound 
dynamic significance. Rounding the interpolated alti- 
tudes to the nearest whole meter would seriously d e  
grade this implicit information. 

Minor details in each of the two maps may be over- 
represented in the interpolations. The actual surface 
topography Z(x, y, t )  may have short-lived, perhaps fast- 
moving, small-scale features. If so, one of these features 
present at the time of one or another of the maps will be 
projected through the time interval, in the same loca- 
tion but with diminishing intensity, to the time of the 
other map. The norm fields f,(x, y), which constitute the 
basis of the bterpolation, are linear combinations of the 
two maps, but the pattern of map-bmap altitude 
changes (fig. 5) exhibits little congruence between the 
minor details of the two maps. For any particular flight 
date, this effect is neutralized, partially, by the inter- 
polation among the IPP deviations from the norm field. 
Because the results include values interpolated only on 
the 762.5-meter grid, this overemphasis is tolerable; 
however, if maps were to be prepared for the inter- 
mediate flight dates, or if the interpolation were con- 
ducted on a fine grid, the fictional replication of these 
ephemeral minor details would not be tolerable. The 
number of points interpolated on the grid nodes is 
roughly the same as the number of IPP's. 

The correlation function R(7.d) does not fit the em- 
pirical r*(r,d) exactly, and the ideals of homogeneity and 
isotropy are fulfilled only approximately. These imper- 
fections affect the results, ultimately, as irregularities 

FIGURE 15.-Error EG estimated by the algorithm using V=E;= 
12 m2 from figure 13, the error E'h from figure 14, and the error 
(EG)+l  formed as the root-mean-square of the algorithmestimated 
errors for individual points being rounded up to the next whole 
number of meters. Although continuous curves are shown for clari- 
ty, the quantities exist for only integer values of the number N of 
individual photogrammetric points used by the algorithm for inter- 
polating at any particular point. 

in the weights wL. Generally, unless the data density is 
very low, slight irregularities in the weights produce 
only a slight increase in the actual interpolation error 
(Gandin, 1963, p. 67). The good fit of the norm fields to 
the IPR's, without any interpolation among the 
residuals, would itself yield glaciologically usable data; 
the error for the ground-truth sample was Eh=4.15 m 
when only the norm field W=O) was used. 

Probably the most surprising result is that the radial 
symmetry of the empirical correlation function is inde 
pendent of the glacier flow (eq. 13, 14; fig. 10); that is, 
for finite time lag 7, the correlation is still isotropic. 
Perhaps the high ratio of seasonal variation to long- 
term trend (fig. 8) masks the effect of kinematic waves 
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FIGURE 16.-Fraction XVV) of the number N of individual photogram- 
metric points used for interpolating that are from the same flight as 
the point being interpolated. These results are from the 58-point 
sample of individual and averaged points surveyed from the glacier 
surface. 

on the correlation statistics, or perhaps none were pres- 
ent. The spacetime variation of surface velocity (Meier 
and others, 1984) has this same synchronous behavior 
over the same domain, except for very near the calving 
terminus. 

APPLICATION TO FUTURE WORK 

A few conclusions can be drawn regarding design of 
data-collection programs. If flighbto-flight average 
velocities are required, the flight frequency is bounded 
by the persistence of identifiable natural features, such 
as crevasse patterns or other surface figuring. Because 
the interpolation error rises gently as the IPP density 
declines, the volume of photogrammetric processing for 
any particular flight could probably be reduced, so long 
as the coverage is complete. 

Although altitudes are interpolated here only for the 
dates of the photo flights, it is not because IPP's must 
be available for the same time as the time coordinate of 
the point being interpolated; obtaining the correlation 
values for equation 30 from equation 19 does not d e  
pend on any of the time lags being zero. Instead, it is 
because the flight dates themselves give a reasonably 
rich time distributon of values, and because the method 
of equations 15 and 16 can be used only for the flight 
dates. However, the time variation (fig. 17) of the coeffi- 
cients (a, b,), of table 6 is reasonably well behaved, so 
that norm fields for times between the flight dates could 
be obtained by performing (yet another) preliminary 
interpolation to get a(t), b(t) for some arbitrary time. 

Moreover, if the photogrammetric processing of 
flights later than September 1,1981, is used for produc- 
ing only IPP's instead of a later map, equations 15 and 
16 could obtain norm fields for those flight dates as ex- 

trapolation outside the time interval of the two existing 
maps. As in interpolating between flight dates, the 
algorithm (eq. 22, 23, 30) would then proceed as usual, 
once a norm field is obtained. The suitability of such ex- 
trapolated norm fields would not have to be established 
independently; as long as the equation 16 error E2, re- 
mained reasonably low, the norm field could be confi- 
dently accepted as the basis of the interpolation. 

Good ground truth is essential to determining ab- 
solute altitude. However, if there were a systematic er- 
ror, constant in x and y, and if the bed topography were 
inferred from the same data set, then the dynamic 
variables-velocity, glacier thickness, and surface 
slope-would be unaffected by this error. For a calving 
glacier, though, accurate absolute altitudes would be 
necessary to represent the terminus physics properly. 

For use in dynamic models, the altitude errors are 
probably less significant than the spatial and temporal 
variations in the crevasse pattern and in the density of 
the snow and firn layers. In determining the normal 
stress at a point on the glacier bed, some account must 
be taken of the compactness and density of the overly- 
ing material. Perhaps a massequivalent topography 
could be employed, so that the thickness times a con- 
stant modeling density would equal the actual 
thickness-compactnessdensity integral. Whereas this 
topography might properly represent the distribution of 
the normal stress, along with its gradient, it probably 
would not properly represent the distribution of the 
shear stress. However, if this concept is furthered, it 
may be profitable to consider a "dynamically equivalent 
topography" to which the flow law, including an explicit 
representation of longitudinal stress, could be applied 
exactly by using local derivatives, thus avoiding the 
need for a slope-averaging artifice. I t  is not obvious how 
to do slope averaging in a domain with two horizontal 
space dimensions, but the exact application of such a 
flow law has been successful in timedependent, twe 
dimensional modeling (Rasmussen and Campbell, 1973) 
of a synthetic data set. 

The altitudes interpolated here are accompanied by 
an error estimate. If fields of other variables (velocity, 
bed topography, mass balance, and thickness change) 
were similarly prepared, it may be possible to construct 
a data set that is consistent through the dynamic equa- 
tions, for some reasonable choice of values for the flow- 
law parameters, and that is faithful, within the error 
bounds, to the field data. Two partial solutions of this 
problem have already been achieved: Sikonia (1982, 
written commun.) obtained a twdimensional data set 
that is consistent through the continuity equation, and 
Bindschadler and Rasmussen (1983) obtained a one 
dimensional data set that is consistent through both the 
continuity equation and the flow law. 
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FIGURE 17.-Linear combination coefficients (%bL)W from table 6 for forming the norm fields fL(x,y). They are connected by smooth curves 
(solid line for a, dashed line for b) to indicate that the coefficients may be well enough behaved in time to permit interpolating between 
flight dates, first for the norm field @,y,t) and then for surface altitudes 2*ky,t). 
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APPENDIX A: FOURIER TRANSFORM 
OF THE CORRELATION FUNCTION 

The Fourier transform, 

and depends only on the quantity 4;,,=(4;+4:), which is 
generalized by setting 4,=4,, cos 9 and 43=42,3 sin O: 

is required to be positive for all values 4j > 0 for j=l ,  2.3. 
Because, by using Euler's formula, the exponential may 
be written as 

0 0 

cos [ + 2 , 3 ( ~  cos 9+y sin q) 1 dxdy (A-8) 
p2+X2+f 

ei('Jj~r+~P+'4Q')=[cw 41T+i sin 417] I If the substitutions are made, 

and because the coordinates 7, X, and y are independent 
of each other, equation A-1 may be written 

from which Z2+y2=x2+y2 and &djj=dxdy, equation 
A-8 becomes (Dwight, 1961, formulas 120.01,859.041): 

where 
m 
1 

r + i  sin d17 
lA-A\ I m m 

and 

cos (4$+4y)+i sin (4p+4y)  
dxdy. (A-5) 

p2+x2+y2 

In equation A-4, because the denominator is an even 
function of T and sin ~ # J ~ T  is an odd function of 7, the im- 
aginary part vanishes; and, because cos 4 , ~  is also an 
even function of T, the real part is (Dwight, 1961, for- 
mula 859.001) where KO is the zero-order modified Bessel function of 

the second kind, which is a positive function ranging 
from +oo for zero argument toward zero for large 
argument. 

Finally, combining equations A-3, A-6, and A-10, 
cos 4 T -*p d~=uae  . (A-6) 
a2+r2 

Similarly, in equation A-5, the imaginary part 
vanishes, and the real part may be written as which is positive for all values of the $. 
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APPENDIX B: COLUMBIA GLACIER SURFACE ALTITUDES 

Given in the following grids are results for flights 2 
through 30 (table 1). For flights 3 through 29 the alti- 
tudes are the results of optimum interpolation, but for 
flights 2 and 30 they are from the digitizations of the 
topographic maps for the dates of those two flights. The 
first figure given is altitude, in meters above sea level 

(2; in the case of interpolated altitudes); the figure after 
the solidus (I) is the estimated error, in meters 
( c E,+ 1 > in the case of interpolated altitudes). The col- 
umn numbers (J) of the 762.5-meter data grid are given 
across the top of the array of altitudes, and the row 
numbers (I) are given at the left. 
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Flight 2, July 27, 1974 (1974.568) 
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Flight 3, July 24, 1976 (1976.661) 
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Flight 4, October 1, 1976 (1976.750) 
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Flight 5, November 17,1976 (1976.879) 
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Flight 6, January 19, 1977 (1977.051) 
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Flight 7, March 7, 1977 (1977.180) 
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Flight 8, April 23, 1977 (1977.309) 
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Flight 9, June 2, 1977 (1977.418) 



SURFACE TOPOGRAPHY, LOWER PART OF COLUMBIA GLACIER, ALASKA, 1974-81 

Flight 10, July 7, 1977 (1977.514) 
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Flight 11, August 29, 1977 (1977.659) 
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Flight 12, November 8, 1977 (1977.864) 
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Flight 13, February 28, 1978 (1978.160) 

21 

529.4/2 

524.3/2 

508.8/2 

489.0/2 

482.6/3 

477.3/2 

459.6/2 

404.2/2 

39 1.5/2 

376.413 

348.1 /2 

325 0/2 

294.7/2 

283.6/2 

258.8/3 

246.5/3 

230 7/2 

214.4/2 

185.1/2 

170.0/2 

128.7/2 

o/o 

OIO 
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Flight 14, April 19, 1978 (1978.297) 
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Flight 15, June 11, 1978 (1978.442) 
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Flight 16, July 30, 1978 (1978.576) 
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Flight 17, August 26,1978 (1978.650) 
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Flight 18, November 8, 1978 (1978.853) 
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Flight 19, January 6,1979 (1979.014) 
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Flight 20, April 12, 1979 (1979.277) 
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Flight 21, August 18, 1979 (1979.628) 
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Flight 22, October 20, 1979 (1979.800) 

295.713 

274.0/3 

238.6/3 

OJO 

194.8/2 

194.0/3 

o/o 

o/o 

o/o 
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Flight 23, February 29, 1980 (1980.162) 
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Flight 24, May 12, 1980 (1980.361) 
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Flight 25, July 22, 1980 (1980.556) 
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Flight 27. October 30.1980 (1980.830) 
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Flight 28, March 7, 1981 (1981.180) 
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Flight 29, June 16, 1981 (1981.457) 
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Flight 30, September 1, 1981 (1981.667) 








